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The Stability iniL and WI of the L2-Projection 
onto Finite Element Function Spaces 

By M. Crouzeix and V. Thomee 

Abstract. The stability of the L2-projection onto some standard finite element spaces Vh, 

considered as a map in Lp and W1, I < p < oc, is shown under weaker regularity require- 
ments than quasi-uniformity of the triangulations underlying the definitions of the Vh. 

0. Introduction. The purpose of this paper is to show the stability in Lpand Wp, 
for 1 < p < x, of the L2-projection onto some standard finite element subspaces. 
Special emphasis is placed on requiring less than quasi-uniformity of the triangula- 
tions entering in the definitions of the subspaces. 

In the one-dimensional case, which is discussed in Section 1 below, we first give a 
new proof of a result of T. Dupont (cf. de Boor [2]) showing L., stability without 
any restriction on the defining partitions, thus extending an earlier result by 
Douglas, Dupont and Wahlbin [6] for the quasi-uniform case. We then use the 
technique developed to show the stability in W', in the casep > 1, under a quite 
weak assumption on the partition, depending on p. We also show that some 
restriction on the partition is needed for stability if p > 1. We remark that the 
known Lp stability result has been extended to higher degrees of regularity of the 
subspaces; see de Boor [3] and references therein. 

In the case of a two-dimensional polygonal domain, discussed in Section 2, we 
demonstrate Lp and WI stability results for the L2-projection onto standard 
piecewise polynomial spaces of Lagrangian type. The requirements on the triangula- 
tions involved are more severe than in the one-dimensional case, but allow neverthe- 
less a considerable degree of nonuniformity. The proofs are based on a technique 
used by Descloux [5] to show L., stability in the quasi-uniform case (cf. also 
Douglas, Dupont and Wahlbin [7]). 

Results such as the above are of interest, for instance, in the analysis of Galerkin 
finite element methods for parabolic problems. Thus Bernardi and Raugel [1] use the 
W21 stability of the L2-projection to prove quasi-optimality of the Galerkin solution 
with respect to the energy norm, and Schatz, Thomee and Wahlbin [8] apply the L., 
stability in a similar way (in the quasi-uniform case). 

1. The One-Dimensional Case. In this section we shall study the orthogonal 
projection ST = rh with respect to L2(0, 1) onto the subspace 

Vh={ X E C(O, 1); X Ii E Pk, j = 0,.., N; X (O) = X (1) = 0}, 
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where O = xo < xl < <.X. = 1 is a partition of [0, 1] and Ij = (xj, xj11) 
We shall first demonstrate the following result, in which 11 - denotes the norm in 

Lp(0, 1). 

THEOREM 1. There is a constant C depending only on k such that 

kr u| I CjjUjjlp VU E Lp(0,1), 1 K p < x. 

We shall then turn to estimates in 

P(0, 1) = { VE Lp(0, 1); v' = dv/dx E Lp(0, 1); v (0) = v (1) = 0} 

and show, with hi = +-XP 

THEOREM 2. Let 1 < p < x and assume, for p > 1, that the partition is such that 
h Jhj < CoaI'il, where 1 < a < (k + 1)P/(P- 1). Then 

og sU)' Ilp < C IIu' Ilp v u GE wp (0, 1), 

where C depends on k, and for p > 1 also on CO, a, andp. 

For the proofs of these results we introduce the spaces 

Vh = {X E Vh; X(Xi) = 0, i = N 

and Vhl, the orthogonal complement of Vh2 in Vh with respect to the usual inner 
product in L2(0, 1). For k = 1 we have Vh2 = {0} and Vhl = Vh. We also introduce 
the orthogonal projections vj onto Vh, j = 1, 2, and obtain at once 

(1.1) T=T1?+2 (OT= 71 for k=1). 

We note that 7J2 is determined locally on each Ij by the equations 

(1.2) (vJ2v,q)I = (v,q)li for q E P(Ij) = {q E Pk; q(xj) = q(x1+?) = 0), 

where (., *) is the standard inner product in L2(Ij), and that a function in Vhl is 
completely determined by its values at the interior nodes, so that dim Vhl = N. 

For v E C[0, 1] with v(0) = v(1) = 0 we shall also use the piecewise linear 
interpolant rhv E Vh and note that, for 1 < p < x, 

(1.3) 11(rhv)'IP < 11 V IIP, 

and, denoting the norm in Lp(Ii) by I IIP, 

(1.4) vrhvII< hill v P 

LEMMA 1. There is a constant C depending only on k such that, for 1 < p < x, 

(1 .5) 11 72U IlP < CII U IIP, U GE LP (0, 1), 

and 

(1.6) 1(7r2(u - rhu))'|| < CII U'llP, u E W- (0, 1). 

Proof. We consider first (1.5) for p = 1 and set Uh = 7r2u. It follows, by taking 
q = Uh in (1.2), that 
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Hence lluhIli < C1IIuII11 , where 

Cl= max 2 
qE Pk2(i) 1Jq112,1, 

Using the change of variables"y = (x - xi)/hi, it is easily seen that Cl is indepen- 
dent of the interval Ii and thus depends only on k. Analogously, we obtain 

(1 .7) 11 72U IIP.1i -< CAlu Il.i, 

for p= x, and then for general p by the Riesz-Thorin theorem [9]. The desired 
result now follows by taking pth powers and summing. 

To prove (1.6), we note that 

JJ(7T2(u - rhU)) IIP 2 
-hII7T2(u - rhu) IIP,, where C2= max IIq'IIP 

and, by (1.7) and (1.4), 

l rhu) | < C, 1I U - rhu Ilp, < Clhill u'llp"I , 

from which (1.6) follows with C = 2ClC2. 
In order to study the projection iT1, we shall construct a basis for Vhl. For this 

purpose let us define 4 Ee Pk by 

4A(0) = 0, A(1) = 1, (,q) =f1qdx = 0 Vq ePk. 

For each nodal point xi we associate the function 4i defined by 

( hi t1 

(=0) h on (I Ii, 

* 0 on V( i_l 1U Ii) 

It is then easily seen that { 4i } c Vhl and that these functions thus form a basis. 
For u given, and w = =Tlu = 1 wii, we then have 

N 

Ewi(4i,4j) = (U,4ji) = uj, j = 1,...,N, 
i=l1 

or in matrix form, with G = ((4i, 4j)), W = (wl, ... ., wN)T and U = (u1, ... ., uN)T, 

(1.8) GW= U. 

We note that the Gram matrix G is tridiagonal. We shall need to compute its 
nonzero elements. 

LEMMA 2. We have 

1 ~(h11i + hi) 
k(k + 2) 

and 

k(k + 1)(k + 2) i 
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Proof. By transformation of variables it suffices to show that 

f1i(X)2dx I | w{>(X 
k(k + 2) 

and 

(1 
4xi4I( - x) dx = (_ 1)k 

J| 
,4(x)w4(1-x) dx = 

k(k + 1)(k + 2) 

The definition of 4 implies easily 

4i(X) = 
( -)k 1 k [Xk?( )] k! x(I - x) dXk[I 

Further, since { (x) - x and 4,(1 - x) - (1 - x) E PO, we find 

f +(x)(7{(x) - x) dx = f ip(x)(ip(1 - x) - (1 - x)) dx = 0. 

Hence, integrating by parts k - 1 times, we have 

f4i(X)2dx= (d ) X1 1 I [xk?(1-x)k] dX 

= 1|l k+l -X)d k-I I- d ki I kd 1 
= x1 (I - x) dxd=x 

k ~~k(k +2) 

and 

| 70(x)+1 - x)dx- k Xk+I(I _ X)k dk 1dx 

k 
X 

k(k + 1)(k + 2) 

which completes the proof. 
Let us introduce the diagonal matrix D with the same diagonal elements as G, i.e., 

di= 114I = 1 (hi-, + hi). 
k(k +2) 

We may then write G in the form G = D(I + K), where K is a tridiagonal matrix 
with diagonal elements zero and bidiagonal entries 

k _ '',C/+I) _ ( lk-I hi_I 
i,i-1l 11i112 k+1 h 1+h 

(1.9) 
(-1)k-I hi 

+- k + 1 h1-i-h +h 

The equation (1.8) now takes the form 

(1.10) (I + K)W= D-1U. 
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We are now ready to prove Theorem 1. By Lemma 1 it remains only to prove 

(1.11) 11 7TU IIP < CII u E Lp(O, 1), 

and we begin by showing this for p = x. This will be done by showing (here and 

below we denote by lp the standard lp-norms for N-vectors) 

(1.12) 11 lu 1100 < ClWloo, 

then 

(1 .13) |lWl| <, C|JD - 1U | 

and finally 

ID-1Uloo < ClIull... 

To see that (1.12) holds, we note that, since for no x in (0,1) more than two 4i(x) 

are nonzero, we have 

N 

11K,uKll = max E wjip(x) |< 211P11jWlOC. 
i=1 

In view of (1.10), in order to show (1.13), we only need to show that (I + K)-1 is 

bounded in l,,. But this follows at once from the fact that, by (1.9), 

K IX = max | kij=k 1 < 1, 

and hence 

1 - /1(k + 1) k 

Finally, 

ID-1UOO = max 
I ( ' | 

where 

Cl~ ~ lAi 
111'aX 

1 
C1= max - 2' 

ji 1j 11l2 11 +112' 

where the latter equation follows by transformation of the subintervals onto [0,1]. 
This completes the proof of (1.11) for p = x. For p = 1 the result follows at once 

by duality and for 1 < p < cc by the Riesz-Thorin theorem. The proof of Theorem 
1 is now complete. 

We now turn to the proof of Theorem 2. We may write 

rTU = 7T(u - rhu) + v2(u - rhu) + rhu. 

In view of Lemma 1 and (1.3) the last two terms are bounded, as desired, and it 

remains to consider w = 1,e where E = U - rhu. Letting W= (W1, ... , WN)T where 

wi = w(xi), and E = (E, .. ., EN)T where Ei = (E, 4'), we find that W solves (1.8) 
with U replaced by E. We shall show, with D the diagonal matrix introduced above 
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andp' =p/(p -1), 

11 W IIP < Cl D - IPW lp, 

then 

(1.14) | D -'IP W lP < ClI D -'- /P' EIP, 
and finally 

(1.15) ID 1 l"p'I < Cjj u'llp, 
which together complete the proof. 

We have first 
N 

,lip =E wi + Wi+1c1+l dx 
i=o 

N 

2 P/P E I wi I( h -P+l1 + h-1P +1 )j1| 11IP 

N 

< C E d-P?w I Wi| = Cl D-'Wp W , 
i=l 

where we have used 

dfP- < c(h h + hi)p"1 < C(h-P+l + h-P+?). 

The proof of (1.15) is also straightforward. We have, by H61der's inequality, 

IEi =|(E, {i)| I IIEIIP, ,I 411 IIP ,',_ + 11j~~j 4', ,IIIIP,', 
< C(h11J'/ P1|E|I -1 + hi/Pljj | ) 

and hence by (1.4), 

I I I< C(h1 +1P'I1 U' IP,I,-1 + hl+ P"11 U'IIPj,i,) 
Cdl+'IP || U'||p,I,,_UI,, 

whence (1.15) follows immediately. 
It remains to show (1.14). Recalling that W satisfies (1.8), and hence (1.10), with U 

replaced by E, we have 

(D -l/P'(I + K)Dl VP )D- '/P'W = D 11P'E 

and it thus suffices to show that I + D - 17P'KD17P' has a bounded inverse in lp 
under the assumptions of the theorem. For this purpose we estimate the powers of 
the second term. Since K' is (21 + 1)-diagonal and has nonnegative elements, we 
have 

ID-1'P'K'D1'P'|P < max (di/dj)1"P' K' P. 
Ji -ji<21 

Here, 

dlldj = (hi-, + hi)/(hj1l + h1) < CJ2a21+1 for li -jl 21. 

Further, again since K' is (21 + 1)-diagonal, we have 

|K'< (21 + I)l)K', < (21 + 1)l)K I' < 21 + 1 
(k + 1)' 
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and, using once more the Riesz-Thorin theorem, 

IK' 1 < (21 + 1)'/'p 
I 

for 1 <p < xo. 
(k?+ 1)' frsp~o 

Altogether we fiird, under the assumptions made, 
00 

(I + D -1"P'KD1"P') -1 < 1 + EI:D- 1PKD11P |P 
l=l 

< 1 + (i: (21 + 1)l/P ( + 1 < 

which completes the proof. 
We conclude by remarking that in Theorem 1 and in the case p = 1 of Theorem 2 

no restriction is made concerning the partitions used, and that quite strong mesh 
refinements are permitted for p > 1 in Theorem 2. The following example shows, 
however, that some restriction is needed in the latter case: Consider the partition 
with only one interior point xl = 1 - E, so that ho/h1 = (1 - E)/E. Let k = 1 and 
u(x) = x(I - x). Then 'T7U = I348, where /3 is determined by the equation /$p82 
= (u, 'P4 or, after an easy calculation, /3 = 4(1 + E(1 - E)). In this case, 

=l(TU II {fP = A e(1l- e) dx + 1 eEPdx 
i/p 

1/P, 

which tends to oo with 1/E if p > 1. 

2. The Two-Dimensional Case. In this section we shall consider the orthogonal 
projection onto a finite element subspace of L2(A) where Q is a bounded domain in 
R2. For simplicity we assume that Q is polygonal and consider a family of 
triangulations -h of Q into closed triangles K with disjoint interiors such that no 
vertex of any triangle lies on the interior of an edge of another triangle. We shall use 
the approximating spaces 

Vh= {v E C(O); VI K E Pk, V a1 = 0). 

In order to express our assumptions concerning the partition of Q, we shall 
introduce some notation. For a given Ko we let Rj(KO) be the set of triangles which 
are "j triangles away from Ko", defined by setting Ro(Ko) = Ko and then, 
recursively, for j > 1, Rj(KO) the union of the closed triangles in -h which are not 
in Ui<jRi(Ko), but which have at least one vertex in Rj-1(KO). Thus Rj(KO) is the 
union of the triangles which may be reached by a connected path Ql,..., Qj with Q1 
a vertex of Ko, Qj a vertex of K and QiQi+l an edge of the triangulation for 
1 < i < j, and not by any shorter such path. Setting l(KO, K) = j for K E Rj(KO) it 
follows, in particular, that l(Ko, K) is symmetric in K and Ko. We also define 
nj(KO) to be the number of triangles in Rj(KO). 

Letting aK denote the area of K, we shall assume below that, with some positive 
constants C1, C2, a, ,B, r with a > 1, ,B > 1, we have uniformly for small h, 

(2.1) aK/aK, < Cl a ( O) VK, Ko Eh 

and 

(2.2) nj(K)< C2jrfli V K E -h,j > 1. 
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When all triangles have angles bounded below, independently of h, then aK is 
bounded above and below by chK, where hK is the diameter of K. The case when 
the triangulations are quasi-uniform then corresponds to a = 1. Note that by (2.1) 
we liave 

area(Rj(Ko)) > cnj(KO)aKa'J, 

and, if the angles are bounded below, 

area(Rj (KO)) < area( U si (K 0 C E hKa12 

whence 

nj(KO) < Cj2 if a = 1, 

< C a2j if a > 1. 

In particular, if the angles are bounded below, (2.1) with a > 1 implies (2.2) with 
r = 0, /3 = a2. However, in practice this is a very crude estimate. In fact, for any 
triangulation which is a deformation of a quasi-uniform one, (2.2) holds with /3 = 1, 
r = 2. 

The results of this section are based on the following variant of a lemma by 
Descloux [5] concerning the orthogonal projection 7T in L2(E2) onto Vh. 

LEMMA 3. Let 1 < p < so. There are positive constants y < 1 and C such that, if 
supp v0 cKo, 

(2.3) ITVoI2K (K KO)aC1/2-la1/PI Vo IlIp VK Ko E Sh 

where y depends only on k and C only on k and p. 

Proof. Letting Dj = U, >j Ri(KO) denote the union of triangles which may only be 
reached by paths of length at least j, we shall want to show that for some K > 0, 

(2.4) ||2TVoI|2,D < 
KD 

ITVO1 |2,R for j > 1. 

Assuming this for a moment, we denote the left side by qj and thus find 

qj < K(qj-1 - qj) for j >1, 

whence 

KK2 

1+ K (1 + K)qo < 7vJll 
where y = (K/(1 + K))1/2. Here, since supp vo C Ko, we find, with (, *)R the 
standard inner product in L2(R) with R omitted for R = 02, and p' the conjugate 
exponent p' = p/(p - 1), 

(v0, x) (VO ,q) K0 Jllvlp,K0ma l7TVOlL 2= max - X1 max 12 <IVOIp,K 1C% 12 X ESh 1X 2 qE Pk |1q| 2,K0 q|eP IIq II,K0 

and hence by the standard transformation to a reference triangle, with 8 depending 
on p and k, 

|I STVO 112 SAaIKO / 11 VO IIP,KO 
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Altogether, we have, if j = 1(K, Ko), 

11 TTVO 112,K < || TTVO |12,R $ q>1 2 < S-Yjal2all"I V IK 

which is the desired result with C = 8/Y. 
It remains to show (2.4). Since supp vo c Ko we have 

(2.5) (TV0, X) = O for X E Vh, suppX C DJ-, = DJ U RJ, if j > 1. 

Let X = gvo and define for any X E Sh a new function Cj in Sh by setting Qj = c 
on Dj and Cj = O on EJ-I = UKsg K nD=O K, the union of triangles, all vertices 
of which may be reached from Ko by paths of length at most j - 1. To define Co 
on the remaining triangles K, which are then included in Rj(KO) but not in Ej 
we introduce for such a K the Lagrangian nodes (having barycentric coordinates 

(il/k, i2/k, i3/k) with il, i2 and i3 nonnegative integers) and set Xy = c at all such 
nodes which do not belong to EJ_ or to an edge joining two vertices in Ej- 1, and 
Xo = 0 at the other nodes. With X = CJ5 (2.5) takes the form 

(w,~1)-~()I2D ?(,0) = 0, (@ coj) =11 co 
112,DJ + (Co 5 j) R, ? 

whence 

(2 .6) 1l@I ,< ( j)R- 

In order to estimate the latter quantity, we consider again a triangle K c Rj with K 
not included in EJ - 1 and note that K has either one or two vertices in EJ - 1 and the 
remaining vertices in Dj. For q E Pk we let 4K be the polynomial in Pk which 
vanishes at the nodal points that are in EJ1 or on an edge joining two vertices in 

Ej and agrees with q at the other Lagrangian nodes. We thus have 

co (j 11CO11,K ax 12 q E Pk 11q 2,K 

By transformation to a reference triangle we find that the latter maximum is 
independent of K in the two possible cases for the location of its vertices, so that, 
after summation, 

(G05C0i)R 
- Z 

(2, R,)K <KIII ,RJ. 

KcRi 

Together with (2.6), this completes the proof of (2.4) and hence of the lemma. 
The constant K may thus be expressed in terms of the reference triangle K with 

vertices Q1, Q2 and Q3 as 

K = max max 
j=1,2 qEPk l1ql12,K 

where 4k1 = 0 at Q1, 4k,1 = q at the other nodes and 4K 2 = 0 at the vertices of 

Q1Q2 and = q at the other vertices. 
We are now ready for our stability estimate for g in L,(Q). Here and below, a, /3 

and y are the parameters in (2.1), (2.2) and (2.3). 
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THEOREM 3. Let 1 < p < so and assume that the numbers a, /3 and y are such that 

(2.7) 72y6a 112-llpl < 1 

Then 

lbTu11 < C|IIulp V u E Lp(Q), 
where C depends only on C1, C2, a, 3, r, k and p. 

Proof. We have in the usual way, for each K e -h, 

(2.8) ||STU ||p,K < Ca - 1/2 /IpU|2K 

Here, writing u = EK' G gh U I K", and using Lemma 3, we find 

|| TU 12,K < ? l'r(U I K') 112,K < C ,, y(KK)aYl//PII u IIP,K' 
K' Eh K' Eh 

so that, using also (2.8) and (2.1), 

llTU ||P,K < C 1 yl(K,K)(aK,/aK )1/2-1plU lp,K' 
K' Eh 

K C F h 
K -uTh 

Introducing the vectors X = {XK = IU7TuIIp,K; K E Fh} and Y = {YK IIuIIP,K; 
K e uh} and the symmetric matrix M = (mK, K) with m K,K' = (K K'), where 

S = ya/112-1/pI, we conclude for the corresponding lp-vector and associate matrix 
norms I lp 

ll7TU lip = I X |P < I M IPM Y iP = I M iPi u iIP. 

It remains to bound the matrix norm IMIp. We have by the Riesz-Thorin theorem 
and the symmetry of M, 

IMIP M< iM I =IMk0 = max 8l(K,K') 
K K' 

Using now also the hypothesis (2.2) we find 
00 00 

IMlp < max E nj(K)Si < ,C jr(I3S)j, 
K j=o j=O 

where the latter sum is finite under assumption (2.7). This completes the proof. 
We now show a stability estimate for the gradient of the L2-projection. 

THEOREM 4. Let 1 < p < oo and assume that the angles of $h are bounded below, 
uniformly in h, and that a, /3, and y are such that 

(2.9) yflal1 1/P < 1. 
Then 

IV '7uIIP < CIIVu Ilp for u E - 

Proof. There exists a linear operator rh: Wp-(Q2) -* Vh such that for u E p (0), 

(2.10) 11 VrhU lIP < CII V U IIP 
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and 

(2.11) IIU - rhuIIP,K < ChKIIVUIIp,k <CaY2 IIVUIIP,K 

For p > 2, u E JJ (Q) implies u E C(Ki), and rhu may be chosen as an interpolant 
of u and K as K, whereas for p > 2 a preliminary local regularization as in Clement 
[4] is needed and K may be chosen as K U R1(K). 

We may write 

VTTU = Vg,E + Vrhu, where = u-rhu, 

and, in view of (2.10), it suffices to estimate V7TU. We have the inverse estimate 

I I V'gE I IpK < Ca K 1/1P||9EII2,K, 

and, as in the proof of Theorem 3, 

|| STE112,K < C l yl(K,K')a1/2-l/PII Elp,K'. 
K'sEh~~K 

Hence, using also (2.1) and (2.11), 

|I VVqEIIp,K < C E Yl(K,K')(aK,/aK) l/Pa-1/211EI p, K' 

< C E (ya11/p)l(K,K)IIVUIIPK' 

The proof is now completed as in Theorem 3. 
It is clear that the assumptions (2.7) and (2.9) are satisfied in the quasi-uniform 

case. In order to see that they permit severely nonuniform triangulations, it is 
necessary to know that the constant y is not too close to 1. For this purpose we 
recall that y = (K/(I + K))1/2 with K = Kk = maX(Klk, K2k), where with the nota- 
tion of the proof of Lemma 3, 

(2.12) Kjk =mEax 2 ' j = 1,2, k > 1. 

Introducing the Lagrangian basis functions { 4j }fk corresponding to the Lagrangian 
nodes { Qj }'k in K, so that 4,(Qj) = Sij, we have 

Nk 

11 q 112,K = (A(, () , q E jij E- Pk,5 
i=l 

where A is the matrix with elements aij = (4j, 4). Correspondingly, the quadratic 
form in the numerator in (2.12) may be obtained as 

(q, 54k,j) = (Bj, 5), j = 1,2, 

where Bj is a symmetric matrix obtained from A as follows: Let S be the set of 
indices i such that 4k,j is forced to vanish at Qi, i E S, and let 

S' = {1,2, ..., Nk} \S. 

Then 4k,j = Ej E s Ajj and hence (q, 4k) = (Be, {), with B = (bij), where 

bij= 0 if i,j E S, 

aij if iE S, jS'or jeS,ieS', 

= aij if i, j E S'. 
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For i = 1, S = {1}, and for i = 2, S consists of the indices for which Qi are on Q1Q2. 
With this notation, Kjk is the largest eigenvalue of the eigenvalue problem 
(2.13) -Bjt = XAt. 

For k = 1 we have N1 = 3 and 

(As () = + 4 + 43 + 3 142 + 4243 + 103)aK/6, 

= + 3 + 4243 + 2M142 + 2M143)aK/6, 

2, = 3 ?2 3 + 24203)aK/6. 

By completing squares we find easily that for both j = 1 and 2, X = ( - 2)/4 is 
the smallest number such that 

(At,) + (Bj(,) 0 V c- R3 
Hence, 

Ki Kii K12 =(F6 2)/4 = .112, 'Yi = F3 - F2 .318. 
For k = 2 and k = 3 we have N2 = 6 and N3 = 10 nodal points, respectively. By 

numerical computation we have determined the largest eigenvalues of (2.13) in these 
cases and found 

K12 = .048, K22 = .165, K2 = .165, 72 = .376, 
and 

K13 .032, K23 = .142, K 3 = .142, Y3 = .353. 
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