The Stability in L_p and W_p^1 of the L_2 -Projection onto Finite Element Function Spaces

By M. Crouzeix and V. Thomée

Abstract. The stability of the L_2 -projection onto some standard finite element spaces V_h , considered as a map in L_p and W_p^1 , $1 \le p \le \infty$, is shown under weaker regularity requirements than quasi-uniformity of the triangulations underlying the definitions of the V_h .

0. Introduction. The purpose of this paper is to show the stability in L_p and W_p^1 , for $1 \le p \le \infty$, of the L_2 -projection onto some standard finite element subspaces. Special emphasis is placed on requiring less than quasi-uniformity of the triangulations entering in the definitions of the subspaces.

In the one-dimensional case, which is discussed in Section 1 below, we first give a new proof of a result of T. Dupont (cf. de Boor [2]) showing L_{∞} stability without any restriction on the defining partitions, thus extending an earlier result by Douglas, Dupont and Wahlbin [6] for the quasi-uniform case. We then use the technique developed to show the stability in W_p^1 , in the case p > 1, under a quite weak assumption on the partition, depending on p. We also show that some restriction on the partition is needed for stability if p > 1. We remark that the known L_p stability result has been extended to higher degrees of regularity of the subspaces; see de Boor [3] and references therein.

In the case of a two-dimensional polygonal domain, discussed in Section 2, we demonstrate L_p and W_p^1 stability results for the L_2 -projection onto standard piecewise polynomial spaces of Lagrangian type. The requirements on the triangulations involved are more severe than in the one-dimensional case, but allow nevertheless a considerable degree of nonuniformity. The proofs are based on a technique used by Descloux [5] to show L_{∞} stability in the quasi-uniform case (cf. also Douglas, Dupont and Wahlbin [7]).

Results such as the above are of interest, for instance, in the analysis of Galerkin finite element methods for parabolic problems. Thus Bernardi and Raugel [1] use the W_2^1 stability of the L_2 -projection to prove quasi-optimality of the Galerkin solution with respect to the energy norm, and Schatz, Thomée and Wahlbin [8] apply the L_{∞} stability in a similar way (in the quasi-uniform case).

1. The One-Dimensional Case. In this section we shall study the orthogonal projection $\pi = \pi_h$ with respect to $L_2(0, 1)$ onto the subspace

$$V_h = \{ \chi \in C(0,1); \chi |_{I_k} \in P_k, j = 0, \dots, N; \chi(0) = \chi(1) = 0 \},\$$

Received January 7, 1986.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 41A15, 41A50, 41A63.

where $0 = x_0 < x_1 < \cdots < x_{N+1} = 1$ is a partition of [0, 1] and $I_j = (x_j, x_{j+1})$. We shall first demonstrate the following result, in which $\|\cdot\|_p$ denotes the norm in $L_p(0, 1)$.

THEOREM 1. There is a constant C depending only on k such that

$$\|\pi u\|_p \leq C \|u\|_p \quad \forall u \in L_p(0,1), 1 \leq p \leq \infty.$$

We shall then turn to estimates in

$$\mathring{W}_{p}^{1}(0,1) = \left\{ v \in L_{p}(0,1); \ v' = dv/dx \in L_{p}(0,1); \ v(0) = v(1) = 0 \right\}$$

and show, with $h_i = x_{i+1} - x_i$,

THEOREM 2. Let $1 \le p \le \infty$ and assume, for p > 1, that the partition is such that $h_i/h_j \le C_0 \alpha^{|i-j|}$, where $1 \le \alpha < (k+1)^{p/(p-1)}$. Then

$$\|(\pi u)'\|_{p} \leq C \|u'\|_{p} \quad \forall u \in \mathring{W}_{p}^{1}(0,1),$$

where C depends on k, and for p > 1 also on C_0 , α , and p.

For the proofs of these results we introduce the spaces

$$V_h^2 = \{ \chi \in V_h; \chi(x_i) = 0, i = 1, ..., N \}$$

and V_h^1 , the orthogonal complement of V_h^2 in V_h with respect to the usual inner product in $L_2(0, 1)$. For k = 1 we have $V_h^2 = \{0\}$ and $V_h^1 = V_h$. We also introduce the orthogonal projections π_j onto V_h^j , j = 1, 2, and obtain at once

(1.1)
$$\pi = \pi_1 + \pi_2$$
 $(\pi = \pi_1 \text{ for } k = 1).$

We note that π_2 is determined locally on each I_i by the equations

(1.2)
$$(\pi_2 v, q)_{I_j} = (v, q)_{I_j}$$
 for $q \in P_k^0(I_j) = \{q \in P_k; q(x_j) = q(x_{j+1}) = 0\},$

where $(\cdot, \cdot)_{I_j}$ is the standard inner product in $L_2(I_j)$, and that a function in V_h^1 is completely determined by its values at the interior nodes, so that dim $V_h^1 = N$.

For $v \in C[0, 1]$ with v(0) = v(1) = 0 we shall also use the piecewise linear interpolant $r_h v \in V_h$ and note that, for $1 \le p \le \infty$,

$$(1.3) \qquad \qquad \left\| \left(r_{h}v\right)' \right\|_{p} \leq \left\| v' \right\|_{p}$$

and, denoting the norm in $L_p(I_i)$ by $\|\cdot\|_{p,L}$,

(1.4)
$$\|v - r_h v\|_{p, I_i} \leq \frac{1}{2} h_i \|v'\|_p.$$

LEMMA 1. There is a constant C depending only on k such that, for $1 \le p \le \infty$,

(1.5)
$$\|\pi_2 u\|_p \leq C \|u\|_p, \quad u \in L_p(0,1),$$

and

(1.6)
$$\left\| \left(\pi_2 (u - r_h u) \right)' \right\|_p \leq C \| u' \|_p, \quad u \in \mathring{W}_p^1(0, 1).$$

Proof. We consider first (1.5) for p = 1 and set $\tilde{u}_h = \pi_2 u$. It follows, by taking $q = \tilde{u}_h$ in (1.2), that

$$\|\tilde{u}_{h}\|_{2,I_{t}}^{2} \leq \|u\|_{1,I_{t}}\|\tilde{u}_{h}\|_{\infty,I_{t}}.$$

Hence $\|\tilde{u}_{h}\|_{1,I_{i}} \leq C_{1}\|u\|_{1,I_{i}}$, where

$$C_1 = \max_{q \in P_k^0(I_i)} \frac{\|q\|_{1,I_i} \|q\|_{\infty,I_i}}{\|q\|_{2,I_i}^2}.$$

Using the change of variables $y = (x - x_i)/h_i$, it is easily seen that C_1 is independent of the interval I_i and thus depends only on k. Analogously, we obtain

(1.7)
$$\|\pi_2 u\|_{p,I_i} \leq C_1 \|u\|_{p,I_i},$$

for $p = \infty$, and then for general p by the Riesz-Thorin theorem [9]. The desired result now follows by taking pth powers and summing.

To prove (1.6), we note that

$$\left\| \left(\pi_2 (u - r_h u) \right)' \right\|_{p, I_i} \leq \frac{C_2}{h_i} \| \pi_2 (u - r_h u) \|_{p, I_i}, \text{ where } C_2 = \max_{q \in P_k^0(0, 1)} \frac{\|q'\|_p}{\|q\|_p},$$

and, by (1.7) and (1.4),

$$\|\pi_{2}(u-r_{h}u)\|_{p,I_{i}} \leq C_{1}\|u-r_{h}u\|_{p,I_{i}} \leq \frac{1}{2}C_{1}h_{i}\|u'\|_{p,I_{i}},$$

from which (1.6) follows with $C = \frac{1}{2}C_1C_2$.

N

In order to study the projection π_1 , we shall construct a basis for V_h^1 . For this purpose let us define $\psi \in P_k$ by

$$\psi(0) = 0, \quad \psi(1) = 1, \quad (\psi, q) = \int_0^1 \psi q \, dx = 0 \quad \forall q \in P_k^0.$$

For each nodal point x_i we associate the function ψ_i defined by

$$\begin{aligned} \psi_i(x) &= \psi\left(\frac{x - x_{i-1}}{h_{i-1}}\right) & \text{ on } I_{i-1}, \\ &= \psi\left(\frac{x_{i+1} - x}{h_i}\right) & \text{ on } I_i, \\ &= 0 & \text{ on } \mathscr{C}\left(\overline{I_{i-1} \cup I_i}\right). \end{aligned}$$

It is then easily seen that $\{\psi_i\}_1^N \subset V_h^1$ and that these functions thus form a basis.

For *u* given, and $w = \pi_1 u = \sum_{i=1}^N w_i \psi_i$, we then have

$$\sum_{i=1}^{N} w_i(\psi_i, \psi_j) = (u, \psi_j) = u_j, \qquad j = 1, \ldots, N,$$

or in matrix form, with $G = ((\psi_i, \psi_j)), W = (w_1, \dots, w_N)^T$ and $U = (u_1, \dots, u_N)^T$, (1.8) GW = U.

We note that the Gram matrix G is tridiagonal. We shall need to compute its nonzero elements.

LEMMA 2. We have

$$\|\psi_i\|^2 = \frac{1}{k(k+2)}(h_{i-1}+h_i)$$

and

$$(\psi_i, \psi_{i+1}) = \frac{(-1)^{k-1}}{k(k+1)(k+2)}h_i$$

Proof. By transformation of variables it suffices to show that

$$\int_0^1 \psi(x)^2 \, dx = \frac{1}{k(k+2)}$$

and

$$\int_0^1 \psi(x)\psi(1-x)\,dx = \frac{(-1)^{k-1}}{k(k+1)(k+2)}$$

The definition of ψ implies easily

$$\psi(x) = \frac{(-1)^{k-1}}{k!} \frac{1}{x(1-x)} \frac{d^{k-1}}{dx^{k-1}} \Big[x^{k+1} (1-x)^k \Big].$$

Further, since $\psi(x) - x$ and $\psi(1 - x) - (1 - x) \in P_k^0$, we find

$$\int_0^1 \psi(x)(\psi(x) - x) \, dx = \int_0^1 \psi(x)(\psi(1 - x) - (1 - x)) \, dx = 0.$$

Hence, integrating by parts k - 1 times, we have

$$\int_0^1 \psi(x)^2 dx = \frac{(-1)^{k-1}}{k!} \int_0^1 \frac{1}{1-x} \frac{d^{k-1}}{dx^{k-1}} \left[x^{k+1} (1-x)^k \right] dx$$
$$= \frac{1}{k!} \int_0^1 x^{k+1} (1-x)^k \frac{d^{k-1}}{dx^{k-1}} \frac{1}{1-x} dx$$
$$= \frac{1}{k} \int_0^1 x^{k+1} dx = \frac{1}{k(k+2)}$$

and

$$\begin{split} \int_0^1 \psi(x)\psi(1-x)\,dx &= \frac{(-1)^{k-1}}{k!} \int_0^1 x^{k+1} (1-x)^k \frac{d^{k-1}}{dx^{k-1}} \frac{1}{x}\,dx \\ &= \frac{(-1)^{k-1}}{k} \int_0^1 x(1-x)^k \,dx = \frac{(-1)^{k-1}}{k(k+1)(k+2)}, \end{split}$$

which completes the proof.

Let us introduce the diagonal matrix D with the same diagonal elements as G, i.e.,

$$d_i = \left\|\psi_i\right\|^2 = \frac{1}{k(k+2)}(h_{i-1}+h_i).$$

We may then write G in the form G = D(I + K), where K is a tridiagonal matrix with diagonal elements zero and bidiagonal entries

(1.9)
$$k_{i,i-1} = \frac{(\psi_i, \psi_{i+1})}{\|\psi_i\|^2} = \frac{(-1)^{k-1}}{k+1} \frac{h_{i-1}}{h_{i-1} + h_i},$$
$$k_{i,i+1} = \frac{(-1)^{k-1}}{k+1} \frac{h_i}{h_{i-1} + h_i}.$$

The equation (1.8) now takes the form

(1.10)
$$(I+K)W = D^{-1}U.$$

We are now ready to prove Theorem 1. By Lemma 1 it remains only to prove

(1.11)
$$\|\pi_1 u\|_p \leq C \|u\|_p, \quad u \in L_p(0,1),$$

and we begin by showing this for $p = \infty$. This will be done by showing (here and below we denote by $|\cdot|_p$ the standard l_p -norms for N-vectors)

(1.12)
$$\|\pi_1 u\|_{\infty} \leq C |W|_{\infty},$$

then

$$|W|_{\infty} \leqslant C|D^{-1}U|_{\infty},$$

and finally

$$|D^{-1}U|_{\infty} \leqslant C ||u||_{\infty}.$$

To see that (1.12) holds, we note that, since for no x in (0, 1) more than two $\psi_i(x)$ are nonzero, we have

$$\left\|\pi_{1}u\right\|_{\infty} = \max_{x} \left|\sum_{i=1}^{N} w_{i}\psi_{i}(x)\right| \leq 2\left\|\psi\right\|_{\infty} |W|_{\infty}.$$

In view of (1.10), in order to show (1.13), we only need to show that $(I + K)^{-1}$ is bounded in l_{∞} . But this follows at once from the fact that, by (1.9),

$$|K|_{\infty} = \max_{i} \sum_{j} |k_{ij}| = \frac{1}{k+1} < 1,$$

and hence

$$|(I+K)^{-1}|_{\infty} \leq \frac{1}{1-1/(k+1)} = \frac{k+1}{k}$$

Finally,

$$|D^{-1}U|_{\infty} = \max_{j} \frac{|(u, \psi_{j})|}{\|\psi_{j}\|^{2}} \leq C_{1} \|u\|_{\infty},$$

where

$$C_1 = \max_j \frac{\|\psi_j\|_1}{\|\psi_j\|_2^2} = \frac{\|\psi\|_1}{\|\psi\|_2^2},$$

where the latter equation follows by transformation of the subintervals onto [0, 1].

This completes the proof of (1.11) for $p = \infty$. For p = 1 the result follows at once by duality and for 1 by the Riesz-Thorin theorem. The proof of Theorem1 is now complete.

We now turn to the proof of Theorem 2. We may write

$$\pi u = \pi_1(u - r_h u) + \pi_2(u - r_h u) + r_h u.$$

In view of Lemma 1 and (1.3) the last two terms are bounded, as desired, and it remains to consider $w = \pi_1 \varepsilon$ where $\varepsilon = u - r_h u$. Letting $W = (w_1, \dots, w_N)^T$ where $w_i = w(x_i)$, and $\varepsilon = (\varepsilon_1, \dots, \varepsilon_N)^T$ where $\varepsilon_i = (\varepsilon, \psi_i)$, we find that W solves (1.8) with U replaced by ε . We shall show, with D the diagonal matrix introduced above

and p' = p/(p - 1),

 $||w'||_p \leq C |D^{-1/p'}W|_p,$

then

(1.14) $|D^{-1/p'}W|_p \leq C |D^{-1-1/p'}\varepsilon|_p,$

and finally

(1.15)
$$|D^{-1-1/p'}\varepsilon|_p \leq C ||u'||_p,$$

which together complete the proof.

We have first

$$\begin{split} \|w'\|_{p}^{p} &= \sum_{i=0}^{N} \int_{I_{i}} \left| w_{i}\psi'_{i} + w_{i+1}\psi'_{i+1} \right|^{p} dx \\ &\leq 2^{p/p'} \sum_{i=1}^{N} \left| w_{i} \right|^{p} \left(h_{i-1}^{-p+1} + h_{i}^{-p+1} \right) \left\| \psi' \right\|_{p}^{p} \\ &\leq C \sum_{i=1}^{N} d_{i}^{-p+1} \left| w_{i} \right|^{p} = C \left| D^{-1/p'} W \right|_{p}^{p}, \end{split}$$

where we have used

$$d_i^{p-1} \leq C(h_{i-1} + h_i)^{p-1} \leq C(h_{i-1}^{-p+1} + h_i^{-p+1})^{-1}$$

The proof of (1.15) is also straightforward. We have, by Hölder's inequality,

$$\begin{split} |\varepsilon_{i}| &= |(\varepsilon, \psi_{i})| \leq \|\varepsilon\|_{p, I_{i-1}} \|\psi_{i}\|_{p', I_{i-1}} + \|\varepsilon\|_{p, I_{i}} \|\psi_{i}\|_{p', I_{i}} \\ &\leq C \Big(h_{i-1}^{1/p'} \|\varepsilon\|_{p, I_{i-1}} + h_{i}^{1/p'} \|\varepsilon\|_{p, I_{i}} \Big), \end{split}$$

and hence by (1.4),

$$\begin{aligned} |\varepsilon_{\iota}| &\leq C \Big(h_{\iota-1}^{1+1/p'} \| u' \|_{p,I_{\iota-1}} + h_{\iota}^{1+1/p'} \| u' \|_{p,I_{\iota}} \Big) \\ &\leq C d_{\iota}^{1+1/p'} \| u' \|_{p,I_{\iota-1} \cup I_{\iota}}, \end{aligned}$$

whence (1.15) follows immediately.

It remains to show (1.14). Recalling that W satisfies (1.8), and hence (1.10), with U replaced by ε , we have

$$(D^{-1/p'}(I+K)D^{1/p'})D^{-1/p'}W = D^{-1-1/p'}\varepsilon,$$

and it thus suffices to show that $I + D^{-1/p'} K D^{1/p'}$ has a bounded inverse in l_p under the assumptions of the theorem. For this purpose we estimate the powers of the second term. Since K^{l} is (2l + 1)-diagonal and has nonnegative elements, we have

$$|D^{-1/p'}K^{l}D^{1/p'}|_{p} \leq \max_{|i-j|\leq 2l} (d_{i}/d_{j})^{1/p'}|K^{l}|_{p}.$$

Here,

$$d_i/d_j = (h_{i-1} + h_i)/(h_{j-1} + h_j) \leq C_0^2 \alpha^{2l+1} \text{ for } |i-j| \leq 2l.$$

Further, again since K^{l} is (2l + 1)-diagonal, we have

$$|K^{l}|_{1} \leq (2l+1)|K^{l}|_{\infty} \leq (2l+1)|K|_{\infty}^{l} \leq \frac{2l+1}{(k+1)^{l}},$$

526

and, using once more the Riesz-Thorin theorem,

$$|K'|_p \leq (2l+1)^{1/p} \frac{1}{(k+1)^l} \quad \text{for } 1 \leq p \leq \infty.$$

Altogether we find, under the assumptions made,

$$\begin{split} \left| \left(I + D^{-1/p'} K D^{1/p'} \right)^{-1} \right|_{p} &\leq 1 + \sum_{l=1}^{\infty} |D^{-1/p'} K^{l} D^{1/p'}|_{p} \\ &\leq 1 + \left(C_{0}^{2} \alpha \right)^{1/p'} \sum_{l=1}^{\infty} (2l+1)^{1/p} \left(\frac{\alpha^{2/p'}}{k+1} \right)^{l} < \infty, \end{split}$$

which completes the proof.

We conclude by remarking that in Theorem 1 and in the case p = 1 of Theorem 2 no restriction is made concerning the partitions used, and that quite strong mesh refinements are permitted for p > 1 in Theorem 2. The following example shows, however, that some restriction is needed in the latter case: Consider the partition with only one interior point $x_1 = 1 - \varepsilon$, so that $h_0/h_1 = (1 - \varepsilon)/\varepsilon$. Let k = 1 and u(x) = x(1 - x). Then $\pi u = \beta \psi_1$, where β is determined by the equation $\beta ||\psi_1||^2$ $= (u, \psi_1)$, or, after an easy calculation, $\beta = \frac{1}{4}(1 + \varepsilon(1 - \varepsilon))$. In this case,

$$\|(\pi u)'\|_p = \beta \left\{ \int_0^{1-\varepsilon} \varepsilon (1-\varepsilon)^{-p} dx + \int_{1-\varepsilon}^1 \varepsilon \varepsilon^{-p} dx \right\}^{1/p} \ge \frac{1}{4} \varepsilon^{-1/p'},$$

which tends to ∞ with $1/\varepsilon$ if p > 1.

2. The Two-Dimensional Case. In this section we shall consider the orthogonal projection onto a finite element subspace of $L_2(\Omega)$ where Ω is a bounded domain in \mathbb{R}^2 . For simplicity we assume that Ω is polygonal and consider a family of triangulations \mathcal{T}_h of $\overline{\Omega}$ into closed triangles K with disjoint interiors such that no vertex of any triangle lies on the interior of an edge of another triangle. We shall use the approximating spaces

$$V_{h} = \left\{ v \in C(\overline{\Omega}); v \mid_{K} \in P_{k}, v \mid_{\partial\Omega} = 0 \right\}.$$

In order to express our assumptions concerning the partition of Ω , we shall introduce some notation. For a given K_0 we let $R_j(K_0)$ be the set of triangles which are "j triangles away from K_0 ", defined by setting $R_0(K_0) = K_0$ and then, recursively, for $j \ge 1$, $R_j(K_0)$ the union of the closed triangles in \mathcal{T}_h which are not in $\bigcup_{i < j} R_i(K_0)$, but which have at least one vertex in $R_{j-1}(K_0)$. Thus $R_j(K_0)$ is the union of the triangles which may be reached by a connected path Q_1, \ldots, Q_j with Q_1 a vertex of K_0 , Q_j a vertex of K and Q_iQ_{i+1} an edge of the triangulation for $1 \le i < j$, and not by any shorter such path. Setting $l(K_0, K) = j$ for $K \in R_j(K_0)$ it follows, in particular, that $l(K_0, K)$ is symmetric in K and K_0 . We also define $n_i(K_0)$ to be the number of triangles in $R_j(K_0)$.

Letting a_K denote the area of K, we shall assume below that, with some positive constants C_1 , C_2 , α , β , r with $\alpha \ge 1$, $\beta \ge 1$, we have uniformly for small h,

(2.1)
$$a_K/a_{K_0} \leq C_1 \alpha^{l(K,K_0)} \quad \forall K, K_0 \in \mathcal{T}_h,$$

and

(2.2)
$$n_j(K) \leq C_2 j' \beta^j \quad \forall K \in \mathscr{T}_h, \ j \geq 1.$$

When all triangles have angles bounded below, independently of h, then a_K is bounded above and below by ch_K^2 , where h_K is the diameter of K. The case when the triangulations are quasi-uniform then corresponds to $\alpha = 1$. Note that by (2.1) we have

$$\operatorname{area}(R_j(K_0)) \geq cn_j(K_0)a_{K_0}\alpha^{-j},$$

and, if the angles are bounded below,

area
$$(R_j(K_0)) \leq \operatorname{area}\left(\bigcup_{i \leq j} R_i(K_0)\right) \leq C\left(\sum_{i=0}^{j} h_{K_0} \alpha^{i/2}\right)^2$$

whence

$$n_j(K_0) \leq Cj^2$$
 if $\alpha = 1$,
 $\leq C\alpha^{2j}$ if $\alpha > 1$.

In particular, if the angles are bounded below, (2.1) with $\alpha > 1$ implies (2.2) with r = 0, $\beta = \alpha^2$. However, in practice this is a very crude estimate. In fact, for any triangulation which is a deformation of a quasi-uniform one, (2.2) holds with $\beta = 1$, r = 2.

The results of this section are based on the following variant of a lemma by Descloux [5] concerning the orthogonal projection π in $L_2(\Omega)$ onto V_h .

LEMMA 3. Let $1 \le p \le \infty$. There are positive constants $\gamma < 1$ and C such that, if supp $v_0 \subset K_0$,

(2.3)
$$\|\pi v_0\|_{2,K} \leq C \gamma^{l(K,K_0)} a_{K_0}^{1/2-1/p} \|v_0\|_p \quad \forall K, K_0 \in \mathcal{T}_h,$$

where γ depends only on k and C only on k and p.

Proof. Letting $D_j = \bigcup_{i>j} R_i(K_0)$ denote the union of triangles which may only be reached by paths of length at least j, we shall want to show that for some $\kappa > 0$,

(2.4)
$$\|\pi v_0\|_{2,D_j}^2 \leq \kappa \|\pi v_0\|_{2,R_j}^2 \text{ for } j \geq 1$$

Assuming this for a moment, we denote the left side by q_i and thus find

$$q_j \leq \kappa (q_{j-1} - q_j) \quad \text{for } j \geq 1,$$

whence

$$q_{j} \leq \frac{\kappa}{1+\kappa} q_{j-1} \leq \left(\frac{\kappa}{1+\kappa}\right)^{j} q_{0} \leq \gamma^{2j} \|\pi v_{0}\|_{2}^{2},$$

where $\gamma = (\kappa/(1+\kappa))^{1/2}$. Here, since $\sup v_0 \subset K_0$, we find, with $(\cdot, \cdot)_R$ the standard inner product in $L_2(R)$ with R omitted for $R = \Omega$, and p' the conjugate exponent p' = p/(p-1),

$$\|\pi v_0\|_2 = \max_{\chi \in S_h} \frac{(v_0, \chi)}{\|\chi\|_2^2} \leq \max_{q \in P_k} \frac{(v_0, q)_{K_0}}{\|q\|_{2, K_0}^2} \leq \|v_0\|_{p, K_0} \max_{q \in P_k} \frac{\|q\|_{p', K_0}}{\|q\|_{2, K_0}^2},$$

and hence by the standard transformation to a reference triangle, with δ depending on p and k,

$$\|\pi v_0\|_2 \leq \delta a_{K_0}^{1/p'-1/2} \|v_0\|_{p,K_0}.$$

Altogether, we have, if $j = l(K, K_0)$,

$$\|\pi v_0\|_{2,K} \leq \|\pi v_0\|_{2,R_j} \leq q_{j-1}^{1/2} \leq \delta \gamma^j a_{K_0}^{1/2-1/p} \|v_0\|_{p,K},$$

which is the desired result with $C = \delta / \gamma$.

It remains to show (2.4). Since supp $v_0 \subset K_0$ we have

(2.5)
$$(\pi v_0, \chi) = 0 \text{ for } \chi \in V_h, \operatorname{supp} \chi \subset D_{j-1} = D_j \cup R_j, \text{ if } j \ge 1.$$

Let $\omega = \pi v_0$ and define for any $\omega \in S_h$ a new function $\tilde{\omega}_j$ in S_h by setting $\tilde{\omega}_j = \omega$ on D_j and $\tilde{\omega}_j = 0$ on $\Sigma_{j-1} = \bigcup_{K \in \mathscr{T}_h, K \cap D_j = 0} K$, the union of triangles, all vertices of which may be reached from K_0 by paths of length at most j - 1. To define $\tilde{\omega}_j$ on the remaining triangles K, which are then included in $R_j(K_0)$ but not in Σ_{j-1} , we introduce for such a K the Lagrangian nodes (having barycentric coordinates $(i_1/k, i_2/k, i_3/k)$ with i_1, i_2 and i_3 nonnegative integers) and set $\tilde{\omega}_j = \omega$ at all such nodes which do not belong to Σ_{j-1} or to an edge joining two vertices in Σ_{j-1} , and $\tilde{\omega}_j = 0$ at the other nodes. With $\chi = \tilde{\omega}_j$, (2.5) takes the form

$$(\omega, \tilde{\omega}_j) = \|\omega\|_{2, D_j}^2 + (\omega, \tilde{\omega}_j)_{R_j} = 0,$$

whence

(2.6)
$$\|\omega\|_{2,D_j}^2 \leqslant -(\omega,\tilde{\omega}_j)_{R_j}.$$

In order to estimate the latter quantity, we consider again a triangle $K \subset R_j$ with K not included in Σ_{j-1} and note that K has either one or two vertices in Σ_{j-1} and the remaining vertices in D_j . For $q \in P_k$ we let \tilde{q}_K be the polynomial in P_k which vanishes at the nodal points that are in Σ_{j-1} or on an edge joining two vertices in Σ_{j-1} and agrees with q at the other Lagrangian nodes. We thus have

$$-(\omega,\tilde{\omega}_{j})_{K} \leq \left\|\omega\right\|_{2,K}^{2} \max_{q \in P_{k}} \frac{-(q,\tilde{q}_{K})_{K}}{\left\|q\right\|_{2,K}^{2}}.$$

By transformation to a reference triangle we find that the latter maximum is independent of K in the two possible cases for the location of its vertices, so that, after summation,

$$-(\omega,\tilde{\omega}_{j})_{R_{j}}=-\sum_{K\subset R_{j}}(\omega,\tilde{\omega}_{j})_{K}\leqslant\kappa\|\omega\|_{2,R_{j}}^{2}.$$

Together with (2.6), this completes the proof of (2.4) and hence of the lemma.

The constant κ may thus be expressed in terms of the reference triangle \hat{K} with vertices Q_1, Q_2 and Q_3 as

$$\kappa = \max_{j=1,2} \max_{q \in P_k} \frac{-(q, \tilde{q}_{\hat{K}, j})_{\hat{K}}}{\|q\|_{2, \hat{K}}^2}$$

where $\tilde{q}_{\hat{K},1} = 0$ at Q_1 , $\tilde{q}_{\hat{K},1} = q$ at the other nodes and $\tilde{q}_{\hat{K},2} = 0$ at the vertices of $\overline{Q_1Q_2}$ and = q at the other vertices.

We are now ready for our stability estimate for π in $L_p(\Omega)$. Here and below, α , β and γ are the parameters in (2.1), (2.2) and (2.3).

THEOREM 3. Let $1 \le p \le \infty$ and assume that the numbers α , β and γ are such that

$$(2.7) \qquad \qquad \gamma \beta \alpha^{|1/2 - 1/p|} < 1$$

Then

$$\|\pi u\| \leq C \|u\|_p \quad \forall u \in L_p(\Omega),$$

where C depends only on C_1 , C_2 , α , β , r, k and p.

Proof. We have in the usual way, for each $K \in \mathcal{T}_h$,

(2.8)
$$\|\pi u\|_{p,K} \leq Ca_{K}^{-1/2+1/p} \|\pi u\|_{2,K}.$$

Here, writing $u = \sum_{K' \in \mathcal{T}_h} u|_{K'}$, and using Lemma 3, we find

$$\|\pi u\|_{2,K} \leq \sum_{K'\in\mathscr{T}_h} \|\pi(u|_{K'})\|_{2,K} \leq C \sum_{K'\in\mathscr{T}_h} \gamma^{l(K,K')} a_{K'}^{1/2-1/p} \|u\|_{p,K'},$$

so that, using also (2.8) and (2.1),

$$\|\pi u\|_{p,K} \leq C \sum_{K' \in \mathscr{T}_{h}} \gamma^{l(K,K')} (a_{K'}/a_{K})^{1/2-1/p} \|u\|_{p,K'}$$
$$\leq C \sum_{K' \in \mathscr{T}_{h}} (\gamma \alpha^{|1/2-1/p|})^{l(K,K')} \|u\|_{p,K'}.$$

Introducing the vectors $X = \{x_K = ||\pi u||_{p,K}; K \in \mathcal{T}_h\}$ and $Y = \{y_K = ||u||_{p,K}; K \in \mathcal{T}_h\}$ and the symmetric matrix $M = (m_{K,K'})$ with $m_{K,K'} = \delta^{l(K,K')}$, where $\delta = \gamma \alpha^{|l/2 - 1/p|}$, we conclude for the corresponding l_p -vector and associate matrix norms $|\cdot|_p$

$$\|\pi u\|_p = |X|_p \leq |M|_p |Y|_p = |M|_p \|u\|_p.$$

It remains to bound the matrix norm $|M|_p$. We have by the Riesz-Thorin theorem and the symmetry of M,

$$|M|_{p} \leq |M|_{1}^{1/p} |M|_{\infty}^{1-1/p} = |M|_{\infty} = \max_{K} \sum_{K'} \delta^{l(K,K')}.$$

Using now also the hypothesis (2.2) we find

$$|M|_{p} \leq \max_{K} \sum_{j=0}^{\infty} n_{j}(K) \delta^{j} \leq C \sum_{j=0}^{\infty} j^{r} (\beta \delta)^{j},$$

where the latter sum is finite under assumption (2.7). This completes the proof.

We now show a stability estimate for the gradient of the L_2 -projection.

THEOREM 4. Let $1 \le p \le \infty$ and assume that the angles of \mathcal{T}_h are bounded below, uniformly in h, and that α , β , and γ are such that

(2.9)
$$\gamma \beta \alpha^{1-1/p} < 1.$$

Then

$$\|\nabla \pi u\|_p \leq C \|\nabla u\|_p \quad \text{for } u \in \mathring{W}_p^1(\Omega).$$

Proof. There exists a linear operator r_h : $\mathring{W}_p^1(\Omega) \to V_h$ such that for $u \in \mathring{W}_p^1(\Omega)$, (2.10) $\|\nabla r_h u\|_p \leq C \|\nabla u\|_p$ and

(2.11)
$$\|u - r_h u\|_{p,K} \leq Ch_K \|\nabla u\|_{p,\hat{K}} \leq Ca_K^{1/2} \|\nabla u\|_{p,\hat{K}}.$$

For p > 2, $u \in \mathring{W}_{p}^{1}(\Omega)$ implies $u \in C(\overline{\Omega})$, and $r_{h}u$ may be chosen as an interpolant of u and \hat{K} as K, whereas for $p \ge 2$ a preliminary local regularization as in Clément [4] is needed and \hat{K} may be chosen as $K \cup R_{1}(K)$.

We may write

$$\nabla \pi u = \nabla \pi \varepsilon + \nabla r_h u$$
, where $\varepsilon = u - r_h u$,

and, in view of (2.10), it suffices to estimate $\nabla \pi u$. We have the inverse estimate

$$\|\nabla \pi \varepsilon\|_{p,K} \leq C a_K^{-1+1/p} \|\pi \varepsilon\|_{2,K},$$

and, as in the proof of Theorem 3,

$$\|\pi\varepsilon\|_{2,K} \leq C \sum_{K' \in \mathscr{T}_h} \gamma^{l(K,K')} a_{K'}^{1/2-1/p} \|\varepsilon\|_{p,K'}.$$

Hence, using also (2.1) and (2.11),

$$\begin{aligned} \|\nabla \pi \varepsilon\|_{p,K} &\leq C \sum_{K' \in \mathscr{T}_{h}} \gamma^{l(K,K')} (a_{K'}/a_{K})^{1-1/p} a_{K}^{-1/2} \|\varepsilon\|_{p,K'} \\ &\leq C \sum_{K' \in \mathscr{T}_{h}} (\gamma \alpha^{1-1/p})^{l(K,K')} \|\nabla u\|_{p,K'}. \end{aligned}$$

The proof is now completed as in Theorem 3.

It is clear that the assumptions (2.7) and (2.9) are satisfied in the quasi-uniform case. In order to see that they permit severely nonuniform triangulations, it is necessary to know that the constant γ is not too close to 1. For this purpose we recall that $\gamma = (\kappa/(1 + \kappa))^{1/2}$ with $\kappa = \kappa_k = \max(\kappa_{1k}, \kappa_{2k})$, where with the notation of the proof of Lemma 3,

(2.12)
$$\kappa_{jk} = \max_{q \in P_k} \frac{-(q, \tilde{q}_{\hat{K}, j})_{\hat{K}}}{\|q\|_{2, \hat{K}}^2}, \qquad j = 1, 2, \, k \ge 1.$$

Introducing the Lagrangian basis functions $\{\psi_j\}_1^{N_k}$ corresponding to the Lagrangian nodes $\{Q_i\}_1^{N_k}$ in \hat{K} , so that $\psi_i(Q_j) = \delta_{ij}$, we have

$$||q||_{2,\tilde{K}}^2 = (A\xi,\xi), \qquad q = \sum_{i=1}^{N_k} \xi_i \psi_i \in P_k,$$

where A is the matrix with elements $a_{ij} = (\psi_i, \psi_j)$. Correspondingly, the quadratic form in the numerator in (2.12) may be obtained as

$$(q, \tilde{q}_{\hat{K},j}) = (B_j \xi, \xi), \qquad j = 1, 2,$$

where B_j is a symmetric matrix obtained from A as follows: Let S be the set of indices i such that $\tilde{q}_{\hat{K},j}$ is forced to vanish at Q_i , $i \in S$, and let

$$S' = \{1, 2, \ldots, N_k\} \setminus S.$$

Then $\tilde{q}_{\hat{K},j} = \sum_{j \in S'} \xi_j \psi_j$ and hence $(q, \tilde{q}_{\hat{K}}) = (B\xi, \xi)$, with $B = (b_{ij})$, where $b_{ij} = 0$ if $i, j \in S$, $= \frac{1}{2}a_{ij}$ if $i \in S, j \in S'$ or $j \in S, i \in S'$, $= a_{ij}$ if $i, j \in S'$. For i = 1, $S = \{1\}$, and for i = 2, S consists of the indices for which Q_i are on $\overline{Q_1Q_2}$. With this notation, κ_{jk} is the largest eigenvalue of the eigenvalue problem (2.13) $-B_j\xi = \lambda A\xi$.

For
$$k = 1$$
 we have $N_1 = 3$ and
 $(A\xi, \xi) = (\xi_1^2 + \xi_2^2 + \xi_3^2 + \xi_1\xi_2 + \xi_2\xi_3 + \xi_1\xi_3)a_K/6,$
 $(B_1\xi, \xi) = (\xi_2^2 + \xi_3^2 + \xi_2\xi_3 + \frac{1}{2}\xi_1\xi_2 + \frac{1}{2}\xi_1\xi_3)a_K/6,$
 $(B_2\xi, \xi) = (\xi_3^2 + \frac{1}{2}\xi_1\xi_3 + \frac{1}{2}\xi_2\xi_3)a_K/6.$

By completing squares we find easily that for both j = 1 and 2, $\lambda = (\sqrt{6} - 2)/4$ is the smallest number such that

$$\lambda(A\xi,\xi) + (B_i\xi,\xi) \ge 0 \quad \forall \xi \in R^3.$$

Hence,

$$\kappa_1 = \kappa_{11} = \kappa_{12} = (\sqrt{6} - 2)/4 = .112, \qquad \gamma_1 = \sqrt{3} - \sqrt{2} = .318$$

For k = 2 and k = 3 we have $N_2 = 6$ and $N_3 = 10$ nodal points, respectively. By numerical computation we have determined the largest eigenvalues of (2.13) in these cases and found

$$\kappa_{12} = .048, \quad \kappa_{22} = .165, \quad \kappa_2 = .165, \quad \gamma_2 = .376,$$

and

$$\kappa_{13} = .032, \quad \kappa_{23} = .142, \quad \kappa_{3} = .142, \quad \gamma_{3} = .353.$$

IRISA LA227 Université de Rennes I Campus de Beaulieu F-35042 Rennes Cedex, France

Department of Mathematics Chalmers University of Technology S-41296 Göteborg, Sweden

1. C. BERNARDI & G. RAUGEL, "Approximation numérique de certaines équations paraboliques non linéaires," RAIRO Anal. Numér., v. 18, 1984, pp. 237-285.

2. C. DE BOOR, "A bound on the L^{∞} -norm of L^2 -approximation by splines in terms of a global mesh ratio," Math. Comp., v. 30, 1976, pp. 765-771.

3. C. DE BOOR, "On a max-norm bound for the least-squares spline approximant," Approximation and Function Spaces (Z. Ciesielski, ed.) North-Holland, Amsterdam, 1981, pp. 163–175.

4. P. CLÉMENT, "Approximation by finite element functions using local regularization," *RAIRO Anal.* Numér., v. 9, 1975, pp. 77-84.

5. J. DESCLOUX, "On finite element matrices," SIAM J. Numer. Anal., v. 9, 1972, pp. 260-265.

6. J. DOUGLAS, JR., T. DUPONT & L. WAHLBIN, "Optimal L_{∞} error estimates for Galerkin approximations to solutions of two-point boundary value problems," *Math. Comp.*, v. 29, 1975, pp. 475–483.

7. J. DOUGLAS, JR., T. DUPONT & L. WAHLBIN, "The stability in L^q of the L^2 -projection into finite element function spaces," *Numer. Math.*, v. 23, 1975, pp. 193–197.

8. A. H. SCHATZ, V. THOMÉE & L. B. WAHLBIN, "Maximum norm stability and error estimates in parabolic finite element equations," Comm. Pure Appl. Math., v. 33, 1980, pp. 265-304.

9. G. O. THORIN, "Convexity theorems generalizing those of M. Riesz and Hadamard with some applications," Medd. Lunds Univ. Mat. Sem., v. 9, 1948, pp. 1-58.