The Stability in L_{p} and W_{p}^{1} of the L_{2}-Projection onto Finite Element Function Spaces

By M. Crouzeix and V. Thomée

Abstract

The stability of the L_{2}-projection onto some standard finite element spaces V_{h}, considered as a map in L_{p} and $W_{p}^{1}, 1 \leqslant p \leqslant \infty$, is shown under weaker regularity requirements than quasi-uniformity of the triangulations underlying the definitions of the V_{h}.

0. Introduction. The purpose of this paper is to show the stability in L_{p} and W_{p}^{1}, for $1 \leqslant p \leqslant \infty$, of the L_{2}-projection onto some standard finite element subspaces. Special emphasis is placed on requiring less than quasi-uniformity of the triangulations entering in the definitions of the subspaces.

In the one-dimensional case, which is discussed in Section 1 below, we first give a new proof of a result of T. Dupont (cf. de Boor [2]) showing L_{∞} stability without any restriction on the defining partitions, thus extending an earlier result by Douglas, Dupont and Wahlbin [6] for the quasi-uniform case. We then use the technique developed to show the stability in W_{p}^{1}, in the case $p>1$, under a quite weak assumption on the partition, depending on p. We also show that some restriction on the partition is needed for stability if $p>1$. We remark that the known L_{p} stability result has been extended to higher degrees of regularity of the subspaces; see de Boor [3] and references therein.

In the case of a two-dimensional polygonal domain, discussed in Section 2, we demonstrate L_{p} and W_{p}^{1} stability results for the L_{2}-projection onto standard piecewise polynomial spaces of Lagrangian type. The requirements on the triangulations involved are more severe than in the one-dimensional case, but allow nevertheless a considerable degree of nonuniformity. The proofs are based on a technique used by Descloux [5] to show L_{∞} stability in the quasi-uniform case (cf. also Douglas, Dupont and Wahlbin [7]).

Results such as the above are of interest, for instance, in the analysis of Galerkin finite element methods for parabolic problems. Thus Bernardi and Raugel [1] use the W_{2}^{1} stability of the L_{2}-projection to prove quasi-optimality of the Galerkin solution with respect to the energy norm, and Schatz, Thomé and Wahlbin [8] apply the L_{∞} stability in a similar way (in the quasi-uniform case).

1. The One-Dimensional Case. In this section we shall study the orthogonal projection $\pi=\pi_{h}$ with respect to $L_{2}(0,1)$ onto the subspace

$$
V_{h}=\left\{\chi \in C(0,1) ;\left.\chi\right|_{I_{j}} \in P_{k}, j=0, \ldots, N ; \chi(0)=\chi(1)=0\right\},
$$

[^0]where $0=x_{0}<x_{1}<\cdots<x_{N+1}=1$ is a partition of $[0,1]$ and $I_{j}=\left(x_{j}, x_{j+1}\right)$. We shall first demonstrate the following result, in which $\|\cdot\|_{p}$ denotes the norm in $L_{p}(0,1)$.

Theorem 1. There is a constant C depending only on k such that

$$
\|\pi u\|_{p} \leqslant C\|u\|_{p} \quad \forall u \in L_{p}(0,1), 1 \leqslant p \leqslant \infty .
$$

We shall then turn to estimates in

$$
\stackrel{\circ}{W}_{p}^{1}(0,1)=\left\{v \in L_{p}(0,1) ; v^{\prime}=d v / d x \in L_{p}(0,1) ; v(0)=v(1)=0\right\}
$$

and show, with $h_{i}=x_{i+1}-x_{i}$,
Theorem 2. Let $1 \leqslant p \leqslant \infty$ and assume, for $p>1$, that the partition is such that $h_{\imath} / h_{j} \leqslant C_{0} \alpha^{|i-j|}$, where $1 \leqslant \alpha<(k+1)^{p /(p-1)}$. Then

$$
\left\|(\pi u)^{\prime}\right\|_{p} \leqslant C\left\|u^{\prime}\right\|_{p} \quad \forall u \in \dot{W}_{p}^{1}(0,1)
$$

where C depends on k, and for $p>1$ also on C_{0}, α, and p.
For the proofs of these results we introduce the spaces

$$
V_{h}^{2}=\left\{\chi \in V_{h} ; \chi\left(x_{i}\right)=0, i=1, \ldots, N\right\}
$$

and V_{h}^{1}, the orthogonal complement of V_{h}^{2} in V_{h} with respect to the usual inner product in $L_{2}(0,1)$. For $k=1$ we have $V_{h}^{2}=\{0\}$ and $V_{h}^{1}=V_{h}$. We also introduce the orthogonal projections π_{j} onto $V_{h}^{\prime}, j=1,2$, and obtain at once

$$
\begin{equation*}
\pi=\pi_{1}+\pi_{2} \quad\left(\pi=\pi_{1} \text { for } k=1\right) \tag{1.1}
\end{equation*}
$$

We note that π_{2} is determined locally on each I_{j} by the equations

$$
\begin{equation*}
\left(\pi_{2} v, q\right)_{I_{J}}=(v, q)_{I_{j}} \quad \text { for } q \in P_{k}^{0}\left(I_{j}\right)=\left\{q \in P_{k} ; q\left(x_{j}\right)=q\left(x_{J+1}\right)=0\right\} \tag{1.2}
\end{equation*}
$$

where $(\cdot, \cdot)_{I_{j}}$ is the standard inner product in $L_{2}\left(I_{j}\right)$, and that a function in V_{h}^{1} is completely determined by its values at the interior nodes, so that $\operatorname{dim} V_{h}^{1}=N$.

For $v \in C[0,1]$ with $v(0)=v(1)=0$ we shall also use the piecewise linear interpolant $r_{h} v \in V_{h}$ and note that, for $1 \leqslant p \leqslant \infty$,

$$
\begin{equation*}
\left\|\left(r_{h} v\right)^{\prime}\right\|_{p} \leqslant\left\|v^{\prime}\right\|_{p} \tag{1.3}
\end{equation*}
$$

and, denoting the norm in $L_{p}\left(I_{i}\right)$ by $\|\cdot\|_{p, I_{i}}$,

$$
\begin{equation*}
\left\|v-r_{h} v\right\|_{p, I_{i}} \leqslant \frac{1}{2} h_{i}\left\|v^{\prime}\right\|_{p} \tag{1.4}
\end{equation*}
$$

Lemma 1. There is a constant C depending only on k such that, for $1 \leqslant p \leqslant \infty$,

$$
\begin{equation*}
\left\|\pi_{2} u\right\|_{p} \leqslant C\|u\|_{p}, \quad u \in L_{p}(0,1) \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\left(\pi_{2}\left(u-r_{h} u\right)\right)^{\prime}\right\|_{p} \leqslant C\left\|u^{\prime}\right\|_{p}, \quad u \in \dot{W}_{p}^{1}(0,1) \tag{1.6}
\end{equation*}
$$

Proof. We consider first (1.5) for $p=1$ and set $\tilde{u}_{h}=\pi_{2} u$. It follows, by taking $q=\tilde{u}_{h}$ in (1.2), that

$$
\left\|\tilde{u}_{h}\right\|_{2, I_{i}}^{2} \leqslant\|u\|_{1, I_{i}}\left\|\tilde{u}_{h}\right\|_{\infty, I_{i}} .
$$

Hence $\left\|\tilde{u}_{h}\right\|_{1, I_{i}} \leqslant C_{1}\|u\|_{1, I_{i}}$, where

$$
C_{1}=\max _{q \in P_{k}^{0}\left(I_{i}\right)} \frac{\|q\|_{1, I_{i}}\|q\|_{\infty, I_{i}}}{\|q\|_{2, I_{i}}^{2}} .
$$

Using the change of variables' $y=\left(x-x_{i}\right) / h_{i}$, it is easily seen that C_{1} is independent of the interval I_{i} and thus depends only on k. Analogously, we obtain

$$
\begin{equation*}
\left\|\pi_{2} u\right\|_{p, I_{i}} \leqslant C_{1}\|u\|_{p, I_{i}} \tag{1.7}
\end{equation*}
$$

for $p=\infty$, and then for general p by the Riesz-Thorin theorem [9]. The desired result now follows by taking p th powers and summing.

To prove (1.6), we note that

$$
\left\|\left(\pi_{2}\left(u-r_{h} u\right)\right)^{\prime}\right\|_{p, I_{i}} \leqslant \frac{C_{2}}{h_{i}}\left\|\pi_{2}\left(u-r_{h} u\right)\right\|_{p, I_{i}}, \quad \text { where } C_{2}=\max _{q \in P_{k}^{0}(0,1)} \frac{\left\|q^{\prime}\right\|_{p}}{\|q\|_{p}},
$$

and, by (1.7) and (1.4),

$$
\left\|\pi_{2}\left(u-r_{h} u\right)\right\|_{p, I_{i}} \leqslant C_{1}\left\|u-r_{h} u\right\|_{p, I_{i}} \leqslant \frac{1}{2} C_{1} h_{i}\left\|u^{\prime}\right\|_{p, I_{i}}
$$

from which (1.6) follows with $C=\frac{1}{2} C_{1} C_{2}$.
In order to study the projection π_{1}, we shall construct a basis for V_{h}^{1}. For this purpose let us define $\psi \in P_{k}$ by

$$
\psi(0)=0, \quad \psi(1)=1, \quad(\psi, q)=\int_{0}^{1} \psi q d x=0 \quad \forall q \in P_{k}^{0} .
$$

For each nodal point x_{i} we associate the function ψ_{i} defined by

$$
\begin{aligned}
\psi_{i}(x) & =\psi\left(\frac{x-x_{i-1}}{h_{i-1}}\right) & & \text { on } I_{i-1} \\
& =\psi\left(\frac{x_{i+1}-x}{h_{i}}\right) & & \text { on } I_{i}, \\
& =0 & & \text { on } \mathscr{C}\left(\overline{I_{i-1} \cup I_{i}}\right) .
\end{aligned}
$$

It is then easily seen that $\left\{\psi_{i}\right\}_{1}^{N} \subset V_{h}^{1}$ and that these functions thus form a basis.
For u given, and $w=\pi_{1} u=\sum_{i=1}^{N} w_{i} \psi_{i}$, we then have

$$
\sum_{i=1}^{N} w_{i}\left(\psi_{i}, \psi_{j}\right)=\left(u, \psi_{j}\right)=u_{j}, \quad j=1, \ldots, N
$$

or in matrix form, with $G=\left(\left(\psi_{i}, \psi_{j}\right)\right), W=\left(w_{1}, \ldots, w_{N}\right)^{T}$ and $U=\left(u_{1}, \ldots, u_{N}\right)^{T}$,

$$
\begin{equation*}
G W=U \tag{1.8}
\end{equation*}
$$

We note that the Gram matrix G is tridiagonal. We shall need to compute its nonzero elements.

Lemma 2. We have

$$
\left\|\psi_{i}\right\|^{2}=\frac{1}{k(k+2)}\left(h_{i-1}+h_{i}\right)
$$

and

$$
\left(\psi_{i}, \psi_{i+1}\right)=\frac{(-1)^{k-1}}{k(k+1)(k+2)} h_{i} .
$$

Proof. By transformation of variables it suffices to show that

$$
\int_{0}^{1} \psi(x)^{2} d x=\frac{1}{k(k+2)}
$$

and

$$
\int_{0}^{1} \psi(x) \psi(1-x) d x=\frac{(-1)^{k-1}}{k(k+1)(k+2)}
$$

The definition of ψ implies easily

$$
\psi(x)=\frac{(-1)^{k-1}}{k!} \frac{1}{x(1-x)} \frac{d^{k-1}}{d x^{k-1}}\left[x^{k+1}(1-x)^{k}\right] .
$$

Further, since $\psi(x)-x$ and $\psi(1-x)-(1-x) \in P_{k}^{0}$, we find

$$
\int_{0}^{1} \psi(x)(\psi(x)-x) d x=\int_{0}^{1} \psi(x)(\psi(1-x)-(1-x)) d x=0
$$

Hence, integrating by parts $k-1$ times, we have

$$
\begin{aligned}
\int_{0}^{1} \psi(x)^{2} d x & =\frac{(-1)^{k-1}}{k!} \int_{0}^{1} \frac{1}{1-x} \frac{d^{k-1}}{d x^{k-1}}\left[x^{k+1}(1-x)^{k}\right] d x \\
& =\frac{1}{k!} \int_{0}^{1} x^{k+1}(1-x)^{k} \frac{d^{k-1}}{d x^{k-1}} \frac{1}{1-x} d x \\
& =\frac{1}{k} \int_{0}^{1} x^{k+1} d x=\frac{1}{k(k+2)}
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{0}^{1} \psi(x) \psi(1-x) d x & =\frac{(-1)^{k-1}}{k!} \int_{0}^{1} x^{k+1}(1-x)^{k} \frac{d^{k-1}}{d x^{k-1}} \frac{1}{x} d x \\
& =\frac{(-1)^{k-1}}{k} \int_{0}^{1} x(1-x)^{k} d x=\frac{(-1)^{k-1}}{k(k+1)(k+2)}
\end{aligned}
$$

which completes the proof.
Let us introduce the diagonal matrix D with the same diagonal elements as G, i.e.,

$$
d_{i}=\left\|\psi_{i}\right\|^{2}=\frac{1}{k(k+2)}\left(h_{i-1}+h_{i}\right)
$$

We may then write G in the form $G=D(I+K)$, where K is a tridiagonal matrix with diagonal elements zero and bidiagonal entries

$$
\begin{align*}
& k_{i, i-1}=\frac{\left(\psi_{i}, \psi_{i+1}\right)}{\left\|\psi_{i}\right\|^{2}}=\frac{(-1)^{k-1}}{k+1} \frac{h_{i-1}}{h_{i-1}+h_{i}} \tag{1.9}\\
& k_{i, i+1}=\frac{(-1)^{k-1}}{k+1} \frac{h_{i}}{h_{i-1}+h_{i}}
\end{align*}
$$

The equation (1.8) now takes the form

$$
\begin{equation*}
(I+K) W=D^{-1} U \tag{1.10}
\end{equation*}
$$

We are now ready to prove Theorem 1. By Lemma 1 it remains only to prove

$$
\begin{equation*}
\left\|\pi_{1} u\right\|_{p} \leqslant C\|u\|_{p}, \quad u \in L_{p}(0,1) \tag{1.11}
\end{equation*}
$$

and we begin by showing this for $p=\infty$. This will be done by showing (here and below we denote by $|\cdot|_{p}$ the standard l_{p}-norms for N-vectors)

$$
\begin{equation*}
\left\|\pi_{1} u\right\|_{\infty} \leqslant C|W|_{\infty}, \tag{1.12}
\end{equation*}
$$

then

$$
\begin{equation*}
|W|_{\infty} \leqslant C\left|D^{-1} U\right|_{\infty}, \tag{1.13}
\end{equation*}
$$

and finally

$$
\left|D^{-1} U\right|_{\infty} \leqslant C\|u\|_{\infty} .
$$

To see that (1.12) holds, we note that, since for no x in $(0,1)$ more than two $\psi_{i}(x)$ are nonzero, we have

$$
\left\|\pi_{1} u\right\|_{\infty}=\max _{x}\left|\sum_{i=1}^{N} w_{i} \psi_{i}(x)\right| \leqslant 2\|\psi\|_{\infty}|W|_{\infty}
$$

In view of (1.10), in order to show (1.13), we only need to show that $(I+K)^{-1}$ is bounded in l_{∞}. But this follows at once from the fact that, by (1.9),

$$
|K|_{\infty}=\max _{i} \sum_{j}\left|k_{i j}\right|=\frac{1}{k+1}<1
$$

and hence

$$
\left|(I+K)^{-1}\right|_{\infty} \leqslant \frac{1}{1-1 /(k+1)}=\frac{k+1}{k}
$$

Finally,

$$
\left|D^{-1} U\right|_{\infty}=\max _{j} \frac{\left|\left(u, \psi_{j}\right)\right|}{\left\|\psi_{j}\right\|^{2}} \leqslant C_{1}\|u\|_{\infty}
$$

where

$$
C_{1}=\max _{j} \frac{\left\|\psi_{j}\right\|_{1}}{\left\|\psi_{j}\right\|_{2}^{2}}=\frac{\|\psi\|_{1}}{\|\psi\|_{2}^{2}}
$$

where the latter equation follows by transformation of the subintervals onto $[0,1]$.
This completes the proof of (1.11) for $p=\infty$. For $p=1$ the result follows at once by duality and for $1<p<\infty$ by the Riesz-Thorin theorem. The proof of Theorem 1 is now complete.

We now turn to the proof of Theorem 2. We may write

$$
\pi u=\pi_{1}\left(u-r_{h} u\right)+\pi_{2}\left(u-r_{h} u\right)+r_{h} u .
$$

In view of Lemma 1 and (1.3) the last two terms are bounded, as desired, and it remains to consider $w=\pi_{1} \varepsilon$ where $\varepsilon=u-r_{h} u$. Letting $W=\left(w_{1}, \ldots, w_{N}\right)^{T}$ where $w_{i}=w\left(x_{i}\right)$, and $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{N}\right)^{T}$ where $\varepsilon_{i}=\left(\varepsilon, \psi_{i}\right)$, we find that W solves (1.8) with U replaced by ε. We shall show, with D the diagonal matrix introduced above
and $p^{\prime}=p /(p-1)$,

$$
\left\|w^{\prime}\right\|_{p} \leqslant C\left|D^{-1 / p^{\prime}} W\right|_{p}
$$

then

$$
\begin{equation*}
\left|D^{-1 / p^{\prime}} W\right|_{p} \leqslant C\left|D^{-1-1 / p^{\prime}} \varepsilon\right|_{p} \tag{1.14}
\end{equation*}
$$

and finally

$$
\begin{equation*}
\left|D^{-1-1 / p^{\prime}} \varepsilon\right|_{p} \leqslant C\left\|u^{\prime}\right\|_{p} \tag{1.15}
\end{equation*}
$$

which together complete the proof.
We have first

$$
\begin{aligned}
\left\|w^{\prime}\right\|_{p}^{p} & =\sum_{i=0}^{N} \int_{I_{i}}\left|w_{i} \psi_{l}^{\prime}+w_{i+1} \psi_{i+1}^{\prime}\right|^{p} d x \\
& \leqslant 2^{p / p^{\prime}} \sum_{i=1}^{N}\left|w_{i}\right|^{p}\left(h_{i-1}^{-p+1}+h_{i}^{-p+1}\right)\left\|\psi^{\prime}\right\|_{p}^{p} \\
& \leqslant C \sum_{i=1}^{N} d_{i}^{-p+1}\left|w_{i}\right|^{p}=C\left|D^{-1 / p^{\prime}} W\right|_{p}^{p}
\end{aligned}
$$

where we have used

$$
d_{i}^{p-1} \leqslant C\left(h_{i-1}+h_{i}\right)^{p-1} \leqslant C\left(h_{i-1}^{-p+1}+h_{i}^{-p+1}\right)^{-1} .
$$

The proof of (1.15) is also straightforward. We have, by Hölder's inequality,

$$
\begin{aligned}
\left|\varepsilon_{i}\right| & =\left|\left(\varepsilon, \psi_{i}\right)\right| \leqslant\|\varepsilon\|_{p, I_{t-1}}\left\|\psi_{i}\right\|_{p^{\prime}, I_{i-1}}+\|\varepsilon\|_{p, I_{t}}\left\|\psi_{i}\right\|_{p^{\prime}, I_{i}} \\
& \leqslant C\left(h_{i-1}^{1 / p^{\prime}}\|\varepsilon\|_{p, I_{i-1}}+h_{i}^{1 / p^{\prime}}\|\varepsilon\|_{p, I_{i}}\right)
\end{aligned}
$$

and hence by (1.4),

$$
\begin{aligned}
\left|\varepsilon_{\imath}\right| & \leqslant C\left(h_{i-1}^{1+1 / p^{\prime}}\left\|u^{\prime}\right\|_{p, I_{i-1}}+h_{i}^{1+1 / p^{\prime}}\left\|u^{\prime}\right\|_{p, I_{i}}\right) \\
& \leqslant C d_{\imath}^{1+1 / p^{\prime}}\left\|u^{\prime}\right\|_{p, I_{t-1} \cup I_{i}}
\end{aligned}
$$

whence (1.15) follows immediately.
It remains to show (1.14). Recalling that W satisfies (1.8), and hence (1.10), with U replaced by ε, we have

$$
\left(D^{-1 / p^{\prime}}(I+K) D^{1 / p^{\prime}}\right) D^{-1 / p^{\prime}} W=D^{-1-1 / p^{\prime}} \varepsilon
$$

and it thus suffices to show that $I+D^{-1 / p^{\prime}} K D^{1 / p^{\prime}}$ has a bounded inverse in l_{p} under the assumptions of the theorem. For this purpose we estimate the powers of the second term. Since K^{l} is $(2 l+1)$-diagonal and has nonnegative elements, we have

$$
\left|D^{-1 / p^{\prime}} K^{l} D^{1 / p^{\prime}}\right|_{p} \leqslant \max _{|i-J| \leqslant 2 l}\left(d_{i} / d_{j}\right)^{1 / p^{\prime}}\left|K^{l}\right|_{p}
$$

Here,

$$
d_{\imath} / d_{j}=\left(h_{i-1}+h_{i}\right) /\left(h_{j-1}+h_{j}\right) \leqslant C_{0}^{2} \alpha^{2 l+1} \quad \text { for }|i-j| \leqslant 2 l .
$$

Further, again since K^{l} is $(2 l+1)$-diagonal, we have

$$
\left|K^{\prime}\right|_{1} \leqslant(2 l+1)\left|K^{l}\right|_{\infty} \leqslant(2 l+1)|K|_{\infty}^{l} \leqslant \frac{2 l+1}{(k+1)^{l}}
$$

and, using once more the Riesz-Thorin theorem,

$$
\left|K^{\prime}\right|_{p} \leqslant(2 l+1)^{1 / p} \frac{1}{(k+1)^{l}} \quad \text { for } 1 \leqslant p \leqslant \infty
$$

Altogether we fird, under the assumptions made,

$$
\begin{aligned}
\left|\left(I+D^{-1 / p^{\prime}} K D^{1 / p^{\prime}}\right)^{-1}\right|_{p} & \leqslant 1+\sum_{l=1}^{\infty}\left|D^{-1 / p^{\prime}} K^{l} D^{1 / p^{\prime}}\right|_{p} \\
& \leqslant 1+\left(C_{0}^{2} \alpha\right)^{1 / p^{\prime}} \sum_{l=1}^{\infty}(2 l+1)^{1 / p}\left(\frac{\alpha^{2 / p^{\prime}}}{k+1}\right)^{l}<\infty
\end{aligned}
$$

which completes the proof.
We conclude by remarking that in Theorem 1 and in the case $p=1$ of Theorem 2 no restriction is made concerning the partitions used, and that quite strong mesh refinements are permitted for $p>1$ in Theorem 2. The following example shows, however, that some restriction is needed in the latter case: Consider the partition with only one interior point $x_{1}=1-\varepsilon$, so that $h_{0} / h_{1}=(1-\varepsilon) / \varepsilon$. Let $k=1$ and $u(x)=x(1-x)$. Then $\pi u=\beta \psi_{1}$, where β is determined by the equation $\beta\left\|\psi_{1}\right\|^{2}$ $=\left(u, \psi_{1}\right)$, or, after an easy calculation, $\beta=\frac{1}{4}(1+\varepsilon(1-\varepsilon))$. In this case,

$$
\left\|(\pi u)^{\prime}\right\|_{p}=\beta\left\{\int_{0}^{1-\varepsilon} \varepsilon(1-\varepsilon)^{-p} d x+\int_{1-\varepsilon}^{1} \varepsilon \varepsilon^{-p} d x\right\}^{1 / p} \geqslant \frac{1}{4} \varepsilon^{-1 / p^{\prime}},
$$

which tends to ∞ with $1 / \varepsilon$ if $p>1$.
2. The Two-Dimensional Case. In this section we shall consider the orthogonal projection onto a finite element subspace of $L_{2}(\Omega)$ where Ω is a bounded domain in R^{2}. For simplicity we assume that Ω is polygonal and consider a family of triangulations \mathscr{T}_{h} of $\bar{\Omega}$ into closed triangles K with disjoint interiors such that no vertex of any triangle lies on the interior of an edge of another triangle. We shall use the approximating spaces

$$
V_{h}=\left\{v \in C(\bar{\Omega}) ;\left.v\right|_{K} \in P_{k},\left.v\right|_{\partial \Omega}=0\right\} .
$$

In order to express our assumptions concerning the partition of Ω, we shall introduce some notation. For a given K_{0} we let $R_{j}\left(K_{0}\right)$ be the set of triangles which are " j triangles away from K_{0} ", defined by setting $R_{0}\left(K_{0}\right)=K_{0}$ and then, recursively, for $j \geqslant 1, R_{j}\left(K_{0}\right)$ the union of the closed triangles in \mathscr{T}_{h} which are not in $\bigcup_{i<j} R_{i}\left(K_{0}\right)$, but which have at least one vertex in $R_{j-1}\left(K_{0}\right)$. Thus $R_{j}\left(K_{0}\right)$ is the union of the triangles which may be reached by a connected path Q_{1}, \ldots, Q_{j} with Q_{1} a vertex of K_{0}, Q_{j} a vertex of K and $Q_{i} Q_{i+1}$ an edge of the triangulation for $1 \leqslant i<j$, and not by any shorter such path. Setting $l\left(K_{0}, K\right)=j$ for $K \in R_{j}\left(K_{0}\right)$ it follows, in particular, that $l\left(K_{0}, K\right)$ is symmetric in K and K_{0}. We also define $n_{j}\left(K_{0}\right)$ to be the number of triangles in $R_{j}\left(K_{0}\right)$.

Letting a_{K} denote the area of K, we shall assume below that, with some positive constants $C_{1}, C_{2}, \alpha, \beta, r$ with $\alpha \geqslant 1, \beta \geqslant 1$, we have uniformly for small h,

$$
\begin{equation*}
a_{K} / a_{K_{0}} \leqslant C_{1} \alpha^{\prime\left(K, K_{0}\right)} \quad \forall K, K_{0} \in \mathscr{T}_{h}, \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
n_{j}(K) \leqslant C_{2} j^{r} \beta^{j} \quad \forall K \in \mathscr{T}_{h}, j \geqslant 1 . \tag{2.2}
\end{equation*}
$$

When all triangles have angles bounded below, independently of h, then a_{K} is bounded above and below by $c h_{K}^{2}$, where h_{K} is the diameter of K. The case when the triangulations are quasi-uniform then corresponds to $\alpha=1$. Note that by (2.1) we have

$$
\operatorname{area}\left(R_{j}\left(K_{0}\right)\right) \geqslant c n_{j}\left(K_{0}\right) a_{K_{0}} \alpha^{-j}
$$

and, if the angles are bounded below,

$$
\operatorname{area}\left(R_{j}\left(K_{0}\right)\right) \leqslant \operatorname{area}\left(\bigcup_{i \leqslant j} R_{i}\left(K_{0}\right)\right) \leqslant C\left(\sum_{i=0}^{J} h_{K_{0}} \alpha^{t / 2}\right)^{2},
$$

whence

$$
\begin{aligned}
n_{j}\left(K_{0}\right) & \leqslant C j^{2} \quad \text { if } \alpha=1, \\
& \leqslant C \alpha^{2 j} \quad \text { if } \alpha>1 .
\end{aligned}
$$

In particular, if the angles are bounded below, (2.1) with $\alpha>1$ implies (2.2) with $r=0, \beta=\alpha^{2}$. However, in practice this is a very crude estimate. In fact, for any triangulation which is a deformation of a quasi-uniform one, (2.2) holds with $\beta=1$, $r=2$.

The results of this section are based on the following variant of a lemma by Descloux [5] concerning the orthogonal projection π in $L_{2}(\Omega)$ onto V_{h}.

Lemma 3. Let $1 \leqslant p \leqslant \infty$. There are positive constants $\gamma<1$ and C such that, if $\operatorname{supp} v_{0} \subset K_{0}$,

$$
\begin{equation*}
\left\|\pi v_{0}\right\|_{2, K} \leqslant C \gamma^{l\left(K, K_{0}\right)} a_{K_{0}}^{1 / 2-1 / p}\left\|v_{0}\right\|_{p} \quad \forall K, K_{0} \in \mathscr{T}_{h}, \tag{2.3}
\end{equation*}
$$

where γ depends only on k and C only on k and p.
Proof. Letting $D_{j}=\bigcup_{i>j} R_{i}\left(K_{0}\right)$ denote the union of triangles which may only be reached by paths of length at least j, we shall want to show that for some $\kappa>0$,

$$
\begin{equation*}
\left\|\pi v_{0}\right\|_{2, D_{j}}^{2} \leqslant \kappa\left\|\pi v_{0}\right\|_{2, R,}^{2} \quad \text { for } j \geqslant 1 . \tag{2.4}
\end{equation*}
$$

Assuming this for a moment, we denote the left side by q_{j} and thus find

$$
q_{j} \leqslant \kappa\left(q_{j-1}-q_{j}\right) \quad \text { for } j \geqslant 1
$$

whence

$$
q_{J} \leqslant \frac{\kappa}{1+\kappa} q_{j-1} \leqslant\left(\frac{\kappa}{1+\kappa}\right)^{j} q_{0} \leqslant \gamma^{2}\left\|\pi v_{0}\right\|_{2}^{2}
$$

where $\gamma=(\kappa /(1+\kappa))^{1 / 2}$. Here, since $\operatorname{supp} v_{0} \subset K_{0}$, we find, with $(\cdot, \cdot)_{R}$ the standard inner product in $L_{2}(R)$ with R omitted for $R=\Omega$, and p^{\prime} the conjugate exponent $p^{\prime}=p /(p-1)$,

$$
\left\|\pi v_{0}\right\|_{2}=\max _{\chi \in S_{h}} \frac{\left(v_{0}, \chi\right)}{\|\chi\|_{2}^{2}} \leqslant \max _{q \in P_{k}} \frac{\left(v_{0}, q\right)_{K_{0}}}{\|q\|_{2, K_{0}}^{2}} \leqslant\left\|v_{0}\right\|_{p, K_{0}} \max _{q \in P_{k}} \frac{\|q\|_{p^{\prime}, K_{0}}}{\|q\|_{2, K_{0}}^{2}}
$$

and hence by the standard transformation to a reference triangle, with δ depending on p and k,

$$
\left\|\pi v_{0}\right\|_{2} \leqslant \delta a_{K_{0}}^{1 / p^{\prime}-1 / 2}\left\|v_{0}\right\|_{p, K_{0}} .
$$

Altogether, we have, if $j=l\left(K, K_{0}\right)$,

$$
\left\|\pi v_{0}\right\|_{2, K} \leqslant\left\|\pi v_{0}\right\|_{2, R,} \leqslant q_{j-1}^{1 / 2} \leqslant \delta \gamma^{j} a_{K_{0}}^{1 / 2-1 / p}\left\|v_{0}\right\|_{p, K}
$$

which is the desired result with $C=\delta / \gamma$.
It remains to show (2.4). Since supp $v_{0} \subset K_{0}$ we have

$$
\begin{equation*}
\left(\pi v_{0}, \chi\right)=0 \quad \text { for } \chi \in V_{h}, \operatorname{supp} \chi \subset D_{J-1}=D_{J} \cup R_{J}, \text { if } j \geqslant 1 \tag{2.5}
\end{equation*}
$$

Let $\omega=\pi v_{0}$ and define for any $\omega \in S_{h}$ a new function $\tilde{\omega}_{j}$ in S_{h} by setting $\tilde{\omega}_{j}=\omega$ on D_{j} and $\tilde{\omega}_{j}=0$ on $\Sigma_{J-1}=\bigcup_{K \in \mathscr{I}_{h}, K \cap D_{j}=0} K$, the union of triangles, all vertices of which may be reached from K_{0} by paths of length at most $j-1$. To define $\tilde{\omega}_{J}$ on the remaining triangles K, which are then included in $R_{j}\left(K_{0}\right)$ but not in Σ_{j-1}, we introduce for such a K the Lagrangian nodes (having barycentric coordinates $\left(i_{1} / k, i_{2} / k, i_{3} / k\right)$ with i_{1}, i_{2} and i_{3} nonnegative integers) and set $\tilde{\omega}_{J}=\omega$ at all such nodes which do not belong to Σ_{J-1} or to an edge joining two vertices in Σ_{j-1}, and $\tilde{\omega}_{J}=0$ at the other nodes. With $\chi=\tilde{\omega}_{J},(2.5)$ takes the form

$$
\left(\omega, \tilde{\omega}_{j}\right)=\|\omega\|_{2, D_{j}}^{2}+\left(\omega, \tilde{\omega}_{j}\right)_{R_{j}}=0
$$

whence

$$
\begin{equation*}
\|\omega\|_{2, D_{j}}^{2} \leqslant-\left(\omega, \tilde{\omega}_{j}\right)_{R_{j}} \tag{2.6}
\end{equation*}
$$

In order to estimate the latter quantity, we consider again a triangle $K \subset R_{j}$ with K not included in Σ_{J-1} and note that K has either one or two vertices in Σ_{J-1} and the remaining vertices in D_{j}. For $q \in P_{k}$ we let \tilde{q}_{K} be the polynomial in P_{k} which vanishes at the nodal points that are in $\Sigma_{J_{-1}}$ or on an edge joining two vertices in Σ_{j-1} and agrees with q at the other Lagrangian nodes. We thus have

$$
-\left(\omega, \tilde{\omega}_{j}\right)_{K} \leqslant\|\omega\|_{2, K}^{2} \max _{q \in P_{k}} \frac{-\left(q, \tilde{q}_{K}\right)_{K}}{\|q\|_{2, K}^{2}}
$$

By transformation to a reference triangle we find that the latter maximum is independent of K in the two possible cases for the location of its vertices, so that, after summation,

$$
-\left(\omega, \tilde{\omega}_{J}\right)_{R_{J}}=-\sum_{K \subset R_{J}}\left(\omega, \tilde{\omega}_{j}\right)_{K} \leqslant \kappa\|\omega\|_{2, R_{j}}^{2}
$$

Together with (2.6), this completes the proof of (2.4) and hence of the lemma.
The constant κ may thus be expressed in terms of the reference triangle \hat{K} with vertices Q_{1}, Q_{2} and Q_{3} as

$$
\kappa=\max _{j=1,2} \max _{q \in P_{k}} \frac{-\left(q, \tilde{q}_{\hat{K}, j}\right)_{\hat{K}}}{\|q\|_{2, \hat{K}}^{2}},
$$

where $\tilde{q}_{\hat{K}, 1}=0$ at $Q_{1}, \tilde{q}_{\hat{K}, 1}=q$ at the other nodes and $\tilde{q}_{\hat{K}, 2}=0$ at the vertices of $\overline{Q_{1} Q_{2}}$ and $=q$ at the other vertices.

We are now ready for our stability estimate for π in $L_{p}(\Omega)$. Here and below, α, β and γ are the parameters in (2.1), (2.2) and (2.3).

Theorem 3. Let $1 \leqslant p \leqslant \infty$ and assume that the numbers α, β and γ are such that

$$
\begin{equation*}
\gamma \beta \alpha^{|1 / 2-1 / p|}<1 \tag{2.7}
\end{equation*}
$$

Then

$$
\|\pi u\| \leqslant C\|u\|_{p} \quad \forall u \in L_{p}(\Omega)
$$

where C depends only on $C_{1}, C_{2}, \alpha, \beta, r, k$ and p.
Proof. We have in the usual way, for each $K \in \mathscr{T}_{h}$,

$$
\begin{equation*}
\|\pi u\|_{p, K} \leqslant C a_{K}^{-1 / 2+1 / p}\|\pi u\|_{2, K} . \tag{2.8}
\end{equation*}
$$

Here, writing $u=\left.\sum_{K^{\prime} \in \mathscr{T}_{h}} u\right|_{K^{\prime}}$, and using Lemma 3, we find

$$
\|\pi u\|_{2, K} \leqslant \sum_{K^{\prime} \in \mathscr{T}_{h}}\left\|\pi\left(\left.u\right|_{K^{\prime}}\right)\right\|_{2, K} \leqslant C \sum_{K^{\prime} \in \mathscr{T}_{h}} \gamma^{l\left(K, K^{\prime}\right)} a_{K^{\prime}}^{1 / 2-1 / p}\|u\|_{p, K^{\prime}}
$$

so that, using also (2.8) and (2.1),

$$
\begin{aligned}
\|\pi u\|_{p, K} & \leqslant C \sum_{K^{\prime} \in \mathscr{T}_{h}} \gamma^{l\left(K, K^{\prime}\right)}\left(a_{K^{\prime}} / a_{K}\right)^{1 / 2-1 / p}\|u\|_{p, K^{\prime}} \\
& \leqslant C \sum_{K^{\prime} \in \mathscr{T}_{h}}\left(\gamma \alpha^{|1 / 2-1 / p|}\right)^{l\left(K, K^{\prime}\right)}\|u\|_{p, K^{\prime}}
\end{aligned}
$$

Introducing the vectors $X=\left\{x_{K}=\|\pi u\|_{p, K} ; K \in \mathscr{T}_{h}\right\}$ and $Y=\left\{y_{K}=\|u\|_{p, K}\right.$; $\left.K \in \mathscr{T}_{h}\right\}$ and the symmetric matrix $M=\left(m_{K, K^{\prime}}\right)$ with $m_{K, K^{\prime}}=\delta^{l\left(K, K^{\prime}\right)}$, where $\delta=\gamma \boldsymbol{\alpha}^{1 / 2-1 / p \mid}$, we conclude for the corresponding l_{p}-vector and associate matrix norms $|\cdot|_{p}$

$$
\|\pi u\|_{p}=|X|_{p} \leqslant|M|_{p}|Y|_{p}=|M|_{p}\|u\|_{p} .
$$

It remains to bound the matrix norm $|M|_{p}$. We have by the Riesz-Thorin theorem and the symmetry of M,

$$
|M|_{p} \leqslant|M|_{1}^{1 / p}|M|_{\infty}^{1-1 / p}=|M|_{\infty}=\max _{K} \sum_{K^{\prime}} \delta^{l\left(K, K^{\prime}\right)}
$$

Using now also the hypothesis (2.2) we find

$$
|M|_{p} \leqslant \max _{K} \sum_{j=0}^{\infty} n_{j}(K) \delta^{j} \leqslant C \sum_{j=0}^{\infty} j^{r}(\beta \delta)^{j}
$$

where the latter sum is finite under assumption (2.7). This completes the proof.
We now show a stability estimate for the gradient of the L_{2}-projection.
Theorem 4. Let $1 \leqslant p \leqslant \infty$ and assume that the angles of \mathscr{T}_{h} are bounded below, uniformly in h, and that α, β, and γ are such that

$$
\begin{equation*}
\gamma \beta \alpha^{1-1 / p}<1 \tag{2.9}
\end{equation*}
$$

Then

$$
\|\nabla \pi u\|_{p} \leqslant C\|\nabla u\|_{p} \quad \text { for } u \in \grave{W}_{p}^{1}(\Omega)
$$

Proof. There exists a linear operator $r_{h}: \dot{W}_{p}^{1}(\Omega) \rightarrow V_{h}$ such that for $u \in \dot{W}_{p}^{1}(\Omega)$,

$$
\begin{equation*}
\left\|\nabla r_{h} u\right\|_{p} \leqslant C\|\nabla u\|_{p} \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|u-r_{h} u\right\|_{p, K} \leqslant C h_{K}\|\nabla u\|_{p, \hat{K}} \leqslant C a_{K}^{1 / 2}\|\nabla u\|_{p, \hat{K}} \tag{2.11}
\end{equation*}
$$

For $p>2, u \in \dot{W}_{p}^{1}(\Omega)$ implies $u \in C(\bar{\Omega})$, and $r_{h} u$ may be chosen as an interpolant of u and \hat{K} as K, whereas for $p \geqslant 2$ a preliminary local regularization as in Clément [4] is needed and \hat{K} may be chosen as $K \cup R_{1}(K)$.

We may write

$$
\nabla \pi u=\nabla \pi \varepsilon+\nabla r_{h} u, \quad \text { where } \varepsilon=u-r_{h} u
$$

and, in view of (2.10), it suffices to estimate $\nabla \pi u$. We have the inverse estimate

$$
\|\nabla \pi \varepsilon\|_{p, K} \leqslant C a_{K}^{-1+1 / p}\|\pi \varepsilon\|_{2, K},
$$

and, as in the proof of Theorem 3,

$$
\|\pi \varepsilon\|_{2, K} \leqslant C \sum_{K^{\prime} \in \mathscr{T}_{h}} \gamma^{l\left(K, K^{\prime}\right)} a_{K^{\prime}}^{1 / 2-1 / p}\|\varepsilon\|_{p, K^{\prime}} .
$$

Hence, using also (2.1) and (2.11),

$$
\begin{aligned}
\|\nabla \pi \varepsilon\|_{p, K} & \leqslant C \sum_{K^{\prime} \in \mathscr{T}_{h}} \gamma^{l\left(K, K^{\prime}\right)}\left(a_{K^{\prime}} / a_{K}\right)^{1-1 / p} a_{K}^{-1 / 2}\|\varepsilon\|_{p, K^{\prime}} \\
& \leqslant C \sum_{K^{\prime} \in \mathscr{T}_{h}}\left(\gamma \alpha^{1-1 / p}\right)^{l\left(K, K^{\prime}\right)}\|\nabla u\|_{p, K^{\prime}}
\end{aligned}
$$

The proof is now completed as in Theorem 3.
It is clear that the assumptions (2.7) and (2.9) are satisfied in the quasi-uniform case. In order to see that they permit severely nonuniform triangulations, it is necessary to know that the constant γ is not too close to 1 . For this purpose we recall that $\gamma=(\kappa /(1+\kappa))^{1 / 2}$ with $\kappa=\kappa_{k}=\max \left(\kappa_{1 k}, \kappa_{2 k}\right)$, where with the notation of the proof of Lemma 3,

$$
\begin{equation*}
\kappa_{j k}=\max _{q \in P_{k}} \frac{-\left(q, \tilde{q}_{\hat{K}, j}\right)_{\hat{K}}}{\|q\|_{2, \hat{K}}^{2}}, \quad j=1,2, k \geqslant 1 \tag{2.12}
\end{equation*}
$$

Introducing the Lagrangian basis functions $\left\{\psi_{j}\right\}_{1}^{N_{k}}$ corresponding to the Lagrangian nodes $\left\{Q_{j}\right\}_{1}^{N_{k}}$ in \hat{K}, so that $\psi_{i}\left(Q_{j}\right)=\delta_{i j}$, we have

$$
\|q\|_{2, \tilde{K}}^{2}=(A \xi, \xi), \quad q=\sum_{i=1}^{N_{k}} \xi_{i} \psi_{i} \in P_{k}
$$

where A is the matrix with elements $a_{i j}=\left(\psi_{i}, \psi_{j}\right)$. Correspondingly, the quadratic form in the numerator in (2.12) may be obtained as

$$
\left(q, \tilde{q}_{\hat{K}, j}\right)=\left(B_{j} \xi, \xi\right), \quad j=1,2
$$

where B_{j} is a symmetric matrix obtained from A as follows: Let S be the set of indices i such that $\tilde{q}_{\hat{K}, j}$ is forced to vanish at $Q_{i}, i \in S$, and let

$$
S^{\prime}=\left\{1,2, \ldots, N_{k}\right\} \backslash S
$$

Then $\tilde{q}_{\hat{K}, j}=\sum_{j \in S^{\prime}} \xi_{j} \psi_{j}$ and hence $\left(q, \tilde{q}_{\hat{K}}\right)=(B \xi, \xi)$, with $B=\left(b_{i j}\right)$, where

$$
\begin{aligned}
b_{i j} & =0 & & \text { if } i, j \in S \\
& =\frac{1}{2} a_{i j} & & \text { if } i \in S, j \in S^{\prime} \text { or } j \in S, i \in S^{\prime} \\
& =a_{i j} & & \text { if } i, j \in S^{\prime} .
\end{aligned}
$$

For $i=1, S=\{1\}$, and for $i=2, S$ consists of the indices for which Q_{i} are on $\overline{Q_{1} Q_{2}}$. With this notation, $\kappa_{j k}$ is the largest eigenvalue of the eigenvalue problem

$$
\begin{equation*}
-B_{j} \xi=\lambda A \xi \tag{2.13}
\end{equation*}
$$

For $k=1$ we have $N_{1}=3$ and

$$
\begin{aligned}
(A \xi, \xi) & =\left(\xi_{1}^{2}+\xi_{2}^{2}+\xi_{3}^{2}+\xi_{1} \xi_{2}+\xi_{2} \xi_{3}+\xi_{1} \xi_{3}\right) a_{K} / 6 \\
\left(B_{1} \xi, \xi\right) & =\left(\xi_{2}^{2}+\xi_{3}^{2}+\xi_{2} \xi_{3}+\frac{1}{2} \xi_{1} \xi_{2}+\frac{1}{2} \xi_{1} \xi_{3}\right) a_{K} / 6 \\
\left(B_{2} \xi, \xi\right) & =\left(\xi_{3}^{2}+\frac{1}{2} \xi_{1} \xi_{3}+\frac{1}{2} \xi_{2} \xi_{3}\right) a_{K} / 6
\end{aligned}
$$

By completing squares we find easily that for both $j=1$ and $2, \lambda=(\sqrt{6}-2) / 4$ is the smallest number such that

$$
\lambda(A \xi, \xi)+\left(B_{j} \xi, \xi\right) \geqslant 0 \quad \forall \xi \in R^{3} .
$$

Hence,

$$
\kappa_{1}=\kappa_{11}=\kappa_{12}=(\sqrt{6}-2) / 4=.112, \quad \gamma_{1}=\sqrt{3}-\sqrt{2}=.318
$$

For $k=2$ and $k=3$ we have $N_{2}=6$ and $N_{3}=10$ nodal points, respectively. By numerical computation we have determined the largest eigenvalues of (2.13) in these cases and found

$$
\kappa_{12}=.048, \quad \kappa_{22}=.165, \quad \kappa_{2}=.165, \quad \gamma_{2}=.376,
$$

and

$$
\kappa_{13}=.032, \quad \kappa_{23}=.142, \quad \kappa_{3}=.142, \quad \gamma_{3}=.353 .
$$

IRISA LA227
Université de Rennes I
Campus de Beaulieu
F-35042 Rennes Cedex, France
Department of Mathematics
Chalmers University of Technology
S-41296 Göteborg, Sweden

1. C. Bernardi \& G. Raugel, "Approximation numérique de certaines équations paraboliques non linéaires," RAIRO Anal. Numér., v. 18, 1984, pp. 237-285.
2. C. DE BOOR, "A bound on the L^{∞}-norm of L^{2}-approximation by splines in terms of a global mesh ratio," Math. Comp., v. 30, 1976, pp. 765-771.
3. C. DE BOor, "On a max-norm bound for the least-squares spline approximant," Approximation and Function Spaces (Z. Ciesielski, ed.) North-Holland, Amsterdam, 1981, pp. 163-175.
4. P. Clement, "Approximation by finite element functions using local regularization," RAIRO Anal. Numér., v. 9, 1975, pp. 77-84.
5. J. Descloux, "On finite element matrices," SIAM J. Numer. Anal., v. 9, 1972, pp. 260-265.
6. J. Douglas, Jr., T. Dupont \& L. Wahlbin, "Optimal L_{∞} error estimates for Galerkin approximations to solutions of two-point boundary value problems," Math. Comp., v. 29, 1975, pp. 475-483.
7. J. Douglas, Jr., T. Dupont \& L. Wahlbin, "The stability in L^{q} of the L^{2}-projection into finite element function spaces," Numer. Math., v. 23, 1975, pp. 193-197.
8. A. H. Schatz, V. Thomee \& L. B. Wahlbin, "Maximum norm stability and error estimates in parabolic finite element equations," Comm. Pure Appl. Math., v. 33, 1980, pp. 265-304.
9. G. O. Thorin, "Convexity theorems generalizing those of M. Riesz and Hadamard with some applications," Medd. Lunds Univ. Mat. Sem., v. 9, 1948, pp. 1-58.

[^0]: Received January 7, 1986.
 1980 Mathematics Subject Classification. Primary 41A15, 41A50, 41A63.

